AFIT/GE/ENG/92D - 33

Automated Face Recognition System

THESIS

Kenneth R. Runyon
Captain, USAF

AFIT/GE/ENGM2D 3 3

Approved for public release; distribution unlimited

98 1 4 (51

AFIT/GE/ENG/92D -3 3

Automated Face Recognition System

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfiliment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

DTIC QUALITY Lvsricygp g
Kenneth R. Runyon, B.S.S.E.

Captain, USAF
) Apo“siu Yor :
; NTIS GRAM
December, 1992 . DPE2 Y4B a
i Unanascuneed 0O
Justifieatien. ‘
t
By

_Distributien/

évailability Codes
‘Awvail ané}or
Dist ! Special

P

Approved for public release; distribution unlimited

Acknowledgments

I would like to thank my thesis advisor, Dr. Steve Rogers, and the rest of my thesis committee, Dr.
Dennis Ruck, Dr. Matthew Kabrisky, and Dr. Mark Oxley. Their help made this thesis the educational

experience T had hoped for.

I would like to thank the Face Guys, Capt Kevin Gay and Capt Dennis Krepp. This assignment
might have been tough without them. As it was, I think I actually enjoyed myself. I also wish to thank

Dan Zambon and Dave Doak for their tireless efforts in administering the computer network.

Finally, I want to thank my family; my girls, Anna and Sarah, who have made significant
sacrifices in their short lives, and most especially, my lovely wife Lisa. If I have ever succeeded, it is

because of her.

Kenneth R. Runyon

Table of Contents

Page

Acknowledgments e e ii
Tableof Contents e iii
Listof Figures e viii
Abstract e e ix
L Problem Description L 1-1
1.1 Introduction, 1-1

1.2 Background 1-2

121 Rwessell, 1-3

122 Smith 1-3

123 Lambert I-3

124 Sander 1-3

125 Rebb 1-3

1.26 Current AFRMResearch. 1-4

1.3 ProblemStatement 1-4

1.4 ResearchObjectives 1-5

LS Assumptions, 1-5

16 ScopeandLimitations 1-6

1.7 Standards 1-6

1.8 ApproachandMethodology 1-6

1.9 ThesisOverview 1-7

110 Summary e 1-7

iii

Page

II. Literature Review e e 2-1
21 Introduction e 2-1
22 WISARD o 2-2
2.3 Los Alamos National Laboratory 2-4
2.4 Massachusetts Institute of Technology 2-6
2.5 University of CaliforniaSanDiego 2-8
2.6 Air Force Institute of Technology 2-10
2.6.1 Karhunen Loéve Transform 2-11

26.2 Discrete Cosine Transform 2-13

27 Summary . .. o. ... e e e e e e e e 2-14
I Methodology o e 3-1
31 General e 3-1
3.2 Common FrontEndProcessing 3-2
3.2.1 Image Collection and Segmentation 3-2

322 Preprocessing 3-3

33 FeawreExtraction 3-3
3.3.1 Karhunen Loéve Transform 3-3

3.3.2 Discrete Cosine Transform 34

34 Classifiers e e 3-4
3.4.1 Backpropagation Neural Network 3-5

342 K-nearestneighbor. 3-6

3.5 TrainingSoftware 3-6
351 KLTKNNSystem 3-7

352 DCTKNNSystem. 3-7

353 KLTBPNNSystem 3-8

36 Recognition Softwareo 3-10
36,1 KLTKNNSystem 3-10

iv

3.7

38

IV. Results
4.1

42

43
44

45
4.6
4.7

362 DCTKNNSystem.¢0ouu.o...
363 KLTBPNNSystem
TestDescriptions
37.1 23 Subject-TwoDayTest
3.7.2 30 Subject Manually Segmented - TwoDay Test
373 Four Subject-SevenDayTest

374 Long TermRecognitionTest

......................................

Introduction L Lo oo
23User-TwoDayTest
421 SameDayTest.
422 DifferentDayTest
423 MultipleDay Training
Effect of Segmentation
Four Subject- SevenDay Test
44.1 K-nearestneighbor.
4.4.2 Back Propagation Neural Network
Accuracy versus K for the K-nearest neighbor
Long Term Recognition Test

Single Person Verification

V. Conclusions i e e e e e e e e e e e e e e s

5.1
52
53
54

Inroduction
23 Subject-TwoDayTest
30 Subject Manually Segmented - TwoDay Test

Four Subject- SevenDay Test

Page
3-10
3-10
3-11
3-13
3-13
3-14
3-14
3-14

4-1
4-1
4-2

VL

55
5.6
57
5.8

Accuracy Versus K for the K-pearestneighbor

Single Person Verification

Long Term Recognition Accuarcy

ComparisontoOther Systems

Software Documentation

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22

Makefile .
trainc . .
train_net.c
train_dct.c

train.c . .

grab.c. . .

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

..............................

vi

6-10
6-12
6-15
6-16
6-19
6-21
6-23
6-24
6-28
6-29
6-34
6-36
6-38
6-39
6-39

6-43

vii

Figure

2.1.
2.2
23.
24.
2.5.
2.6.
27.

3.1
3.2,
33.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.

4.1.
4.2
4.3.

44.

List of Figures

WISARD Hardware Implementation
WISARD Neural Network
MIT Face Recognition System
Identity NetHolons
UCSD Recognition System

KLT Feature Extraction Process

DCT Feature Extraction Process o v i v i v v i e e e e

Three Versions of the Face Recognition System .

Front EndSystem e

KLT Feature Extraction
DCT Feature Extraction
Back Propagation Neural Net Recognition Process
K-nearest neighbor Recognition Process
KLT and DCT /KNN Training Process
KLT/BPNN Training Process
KLT and DCT/KNN Recognition Process
KLT/BPNN Recognition Process

Four Class K-Nearest Neighbor Classifier Result
Four Class Backpropagation Classifier Result . .
Accuracy vs. K for 23 Subject Test

Accuracy vs. K for 4 Subject Test

viii

.................

.................

.................

.................

.................

.................

.................

.................

................

.................

.................

.................

.................

.................

.................

.................

3.1
32
34
3-5
35
3.7
3-8

3-11
3-12

4-7
49
4-11

4-12

AFIT/GE/ENG/92D

Abstract

In this thesis three variations of an end-to-end face recognition prototype system are developed,
implemented and tested. Each version includes real-time image collection, automated segmentation,
preprocessing, feature extraction, and classification. The first version uses a Karhunen Loéve Transform
(KLT) feature extractor and a K-nearest neighbor classifier. Version two uses the same feature set but
utilizes a multilayer perceptron neural network with a back propagation learning rule. Finally the third
version uses a Discrete Cosine Transform as the feature extractor and the K-nearest neighbor as the

classifier. Only the KLT versions of the system were tested.

The tests were based on three image sets, each collected over multiple days to analyze the effect
on recognition accuracy of variations in both the image collection environment and the subjects over
time. The first set consisted of 23 Subjects and was taken over a two day period. The second set
consisted of four users and was taken over a seven day period. Finally, the third set consisted of 100

images of a single subject coliected over several weeks.

The K-nearest neighbor achieved the following scores:

o 67% for a 23 Subject - 2 Day Test
e 90% for a 4 Subject - 7 Day Test

® 69% for a single subject - Long Term Test

ix

The Multilayer Perceptron had the following recognition accuracies:

o 74% for a 23 Subject - 2 Day Test
e 100% for a 4 Subject - 7 Day Test

e 100% for a single subject - Long Term Test

Automated Face Recognition System

1. Problem Description

1.1 Introduction

This thesis discusses the design, implementation, and testing of an end-to-end, automated, face
recognition system. This prototype is being developed in response to & DoD requirement for such
a system to provide controlled access to computer accounts. While pieces of the technology exist
in a mature enough form to be immediately implemented, other algorithms must be developed and

integrated to fully establish the system.

An automated face recognition system is a computer application which identifies individuals by
analyzing a video input of the person’s face. The basic components which typically make up such a
system are a visual sensing system to collect the image, a segmentation algorithm to discount variations
of the background, the feature extraction algorithm to pull out the unique characteristics of the image
that distinguish an individual from anyone else, and a classifier to decide which individual the image

represents.

Automated face recognition machines will allow the computer to assume a new and very diverse
role in society. Its application will range in function from establishing a human-computer interface for
disabled children to spotting terrorists in a crowded airport(17). Any system which currently requires
passwords or personal identification numbers (PINS) will eventually provide access to the desired

information or service based on visual authentication of the user as a secondary or even primary level

1-1

of security. Such systems include automated teller machines, computer accounts, and even the security
guard whose function is to compare the photos on restricted entry badges to the face of the wearer. The
advantage of an automated system is that we can eliminate the need to subject a human to mundane,
repetitive tasks and do away with inconvenient passwords and PINs which are easily lost, stolen, or
forgotten. Another use of such systems is to provide a new type of interface between man and machine.
The capability for computers to interface efficiently with humans in the same way that humans interface
with each other (verbal and nonverbal communication) is still very much a research topic; however,
the technology is mature enough to provide a human/computer interface to physically disabled persons

whose controllable motor skills have been reduced to facial expressions(17).

The problem description begins with an overview of the face recognition research being con-
ducted at the Air Force Institute of Technology. The capabilities and shortcomings as well as the current
state of that system are addressed. The problem statement is then given, and the research objectives
stated. Assumptions are then identified and the scope and limitations of the effort given. A statement
of standards is then made, followed by a discussion of the approach used to study this problem. The

chapter concludes with an overview of the remaining chapters of this thesis and a summary.

1.2 Background

The development of an automated face recognition system has been a topic of research at the Air
Force Institute of Technology since 1985. This research resulted in the Autonomous Face Recognition
Machine (AFRM) which was refined and improved over a number of thesis cycles(14, 16, 9, 15, 11).
The system was originally developed to verify Routh’s Cortical Thought Theory (CTTX12). While
CTT faded into obscurity, the AFRM was continued for several thesis efforts. The actual AFRM system

no longer exists in the form of hardware and software; however the documentation from that system

1-2

will be used to guide this thesis effort and to provide a means of gauging the results. The following
sections list the students who have contributed to the AFRM and the particular achievements of their

research. Other face recognition efforts will be discussed in chapter Two.

1.2.1 Russell was the originator of the AFIT face recognition effort. His system was a
somewhat manual process which mapped faces to a two-dimensional “gestalt” vector. This vector was

compared by the nearest neighbor algorithm to vectors stored in a data base(14).

1.2.2 Smith added automatic face location and windowing algorithms to Russell’s face recog-
nition system which allowed the system to work autonomously. Thereafter the system was commonly

referred to by the AFRM acronym (Autonomous Face Recognition Machine)(16).

1.2.3 Lambert considerably improved the segmentation algorithm used by the AFRM. He
reduced the recognition time to seconds. His segmentation technique was based on a frame subtraction
algorithm to detect motion. Once motion was detected, a process dubbed “Lambertization” was used
on the image to discount non-uniform luminance. An algorithm to determine if the segmented image

contained a face was run before passing the image over to the feature extractor(9).

1.2.4 Sander replaced the “gestalt” feature vector with a feature vector comprised of the
coefficients of the discrete Fourier transform (DFT) of the image. His system used the DC component
and the first two harmonics of the DFT. A second contribution was the addition of a back propagation

neural net as the classifier mechanism(15).

1.2.5 Robb added another harmonic to the DFT feature vector, fixed various bugs in the

original code, and thoroughly documented the system. This final version of the AFRM achieved a

recognition accuracy of 73 percent for a training set of 45 subjects. Her thesis provides the best and

final documentation for the AFRM(11).

1.2.6 Current AFRM Research The AFRM was successful from the standpoint that it proved
the ability of a computer to detect and recognize an individual. Unfortunately, the 73 percent recognition
rate of the system is too low to be of practical use. Thus in the latest thesis cycle, Suarez and Goble
set out to increase the recognition accuracy of the system by exploring orthogonal feature sets. Suarez
explored the Karhunen Loéve Transform(17) while Goble researched the Discrete Cosine Transform(S).
These algorithms are used primarily in the data transmission arena as a compression scheme to reduce
images for efficient transmission while retaining the unique information necessary to reconstruct the
image at the receiving end. Both efforts resulted in recognition accuracies which were superior to
the DFT. The goal of this thesis is to implement each of these algorithms into an end-to-end, face

recognition system.

1.3 Problem Statement

The AFRM yields recognition results which are inadequate for operational systems. New
algorithms have been developed to overcome this problem. These algorithms will be implemented into
an end-to-end, face recognition system to meet a DoD requirement. This system will be used in an
application to provide controlled access to computer accounts by visually authenticating prospective

users.

14

1.4 Research Objectives

The objectives of this research are :

e Collect a database of test images.

o Design and implement an end-to-end face recognition system based on Suarez’s Karhunen Loéve

Transform feature set and the nearest neighbor classifier(17).
¢ Evolve the nearest neighbor classifier routine into a K-nearest neighbor classifier.

¢ Implement a version of the face recogntion system using the Discrete Cosine Transform feature

set developed by Goble(5).

e Implement a KLT version of the face recognition system with a backpropagation neural network

classifier.
e Provide recognition accuracy benchmarks for the resulting face recognition system.

o Invesitigate the effect of using Gay ‘s(4) automated segmentation technique on overall recogntion

accuracy.
o Compare the results of a neural network classifier against that of the K-nearest neighbor classifier.

o Investigate the problems and solutions to training and testing on images collected over several

days.

1.5 Assumptions

o The entire system must be implementable using the resources available on a Sun Microsystems

SPARCstation.
e The user attempting to login into the system is cooperative.

1-5

e The only motion in front of the camera is the user’s face.

e Recognition of faces will be limited to frontal views.

1.6 Scope and Limitations

The scope of this thesis is to study the performance of a prototype face recognition system. All

conclusions are based on empirical evidence.

1.7 Standards

The performance criteria for all of the techniques is classification accuracy, speed and user
friendliness. Accuracy is the most important criteria; though speed is high on the list of desired
characteristics. User friendliness will be implemented as much as possible given time and resource
constraints. The accuracy of classification of each technique is the ratio of correct classifications to the

total number of test data.

1.8 Approach and Methodology

As a part of this thesis, a software application is developed on the Sun Microsystems SPARC-
station. This application combines segments of existing software with new programs written in ANSI
C. The algorithms allow the user to collect real time test and training images, train the system using

those images, and perform recognition of potential users. All software is documented in Appendix A.

1-6

1.9 Thesis Overview

Chapter Two presents a review of current literature related to face recognition systems. Chapter
Three provides a detailed description of the methodology. Chapter Four provides a description of the
test results based on the methodology. Chapter Five presents conclusions based on the test results in

Chapter Four.

1.10 Summary
This thesis developes an overall system to be used as both a baseline and a testbed for future
efforts in developing face recognition algorithms. The system performs image collection, segmentation,

feature extraction, training, and recognition.

II. Literature Review

2.1 Introduction

This literature review discusses the development and implementation of face recognition systems.
A typical face recognition process includes algorithms to perform segmentii.on, feature extraction, and
classification. Segmentation is the process of separating the face (or head) of the individual to be
recognized from the clutter of the background. Feature extraction is a process which reduces the
dimensionality of the input image while maintaining the information necessary to uniquely distinguish
an individual. Classification is the algorithm which examines a given feature vector and “recognizes”
the individual in the input image.

During the last decade, several major institutions have invested considerable resources in de-
signing and testing such systems(6, 10, 18, 1). While various levels of success have been achieved,
research continues in an effort to find better algorithms to improve all phases of the recognition process.
The goal is to design a system with an acceptable recognition accuracy that is robust enough to operate
in real world conditions.

The DoD sponsor for this thesis desires a system which can operate within the computational
constraints of a Sun SPARCstation. Their objective is to use this system as a means to prevent
unauthorized access to computer accounts. Therefore the scope of this review will be limited to

systems which make use of accurate, robust, and computationally efficient algorithms.

The review begins with a discussion of the WISARD system developed at Brunel University
in the United Kingdom(6). Next a summary of the back propagation neural network effort being

conducted at Los Alamos National Laboratory will be given(10). Then the Karhunen Loéve Transform

2-1

technique being used at the Massachusetts Institute of Technology will be discussed(19, 18). After that
a description of the identity neural network research being done at the University of California San
Diego will be given(3, 1). Finally, the review will end with a short overview of the Karhunen Loéve
and Discrete Cosine Transform feature set research which was accomplished at the Air Force Institute

of Technology(17, 5).

2.2 WISARD

A face recognition system based on neural networks has been developed by a team of researchers
at Brunel University in the United Kingdom(6). This system is unique in that the perceptron style neural
network architecture is implemented in hardware using a VLSI random access memory (RAM). The
153 x 214 pixel input images are first binarized and then the pixels are collected into groupings of
four where each of the four pixels in the group was randomly selected from all 32,742 pixels available
in the image. The four pixel grouping is a feature referred to as a tuple. There are 8,185 tuples in a
given input image. The tuple groupings make the feature set sensitive to global patterns in the image;
though, this does not imply sensitivity to faceness. Each of the four bits for a given tuple is connected
to the address lines of the RAM (see figure 2.1). The remaining address lines are connected to a
binary counter which signifies which of the tuples is being input. The output of the RAM for a given
tuple is either a one or zero. The 8,185 outputs for a given image are summed together to provide an
overall recognition score. The network with the highest score indicates the subject reconized in the
input image. The equivalent perceptron architecture is shown in figure 2.2. Using a single 1 mega-bit
RAM, a network (or discriminator) of this configuration is implemented for each subject in the training

set.

n-tup|e { :__::
—————

input

- B WM -

R —

function address ' 1Mbit Data Out
driven from a { ——] RAM
binary counter T

20

Address Field

Figure 2.1. RAM Neural Network Implementation
©)

Training the system consists of collecting an input image, grouping the image into tuples,
applying the tuples and binary counter output to the address lines of the RAM, and writing a binary
value of one into the accessed memory location. The training set for the system is gathered in real
time and the training images are not stored. The training process is conducted on a train/test cycle by
collecting an input image, training the system on the image, then testing the response of the network
to a new input image of the same subject. This iterative process continues until the recognition score
is in excess of 120 or 95 percent of the maximum response; regardless of the position of the subject
or his expression (frontal views are required). On average, 200-400 images must be collected for each
subject; however, at a processing rate of 25 images per second, the network is trained on each individual

in less than 20 seconds. All training images are collected at the same sitting.

To perform recognition, the system collects a test face which is processed through each discrim-
inator. The test images used in this particular test were collected during the training session, although

the system is shown to work in real time as well. Classification is achieved by determining which

Figure 2.2. Equivalent Neural Network
©)
discriminator gives the highest response for that input image. Using these techniques the system was

trained for 16 subjects and achieved a 100 percent recognition accuracy(6).

A more industrial version of the system has been developed by Scientific Generics Ltd., of
Cambridge(2). They have improved the system by adding a sophisticated infrared illumination system
to the front end to overcome the variable effects of ambient illumination. In addition, a post processing
system has been added to give the time and location of a face within the input scene. The system is

built to provide accurate recognition at near real-time speeds.

2.3 Los Alamos National Laboratory

The Systems Concepts Analysis Team of the Space Sciences and Technology Division, Los
Alamos National Laboratory is investigating using a backpropagation neural network as a face verifi-
cation system. Their emphasis seems to be on how much and what kind of data should be collected to

train a neural network to recognize in general(10).

24

They have collected over 11,416 images. Their original database started with 20 pictures each of
511 subjects. Recently the number of subjects in the database was increased by 249 to 760 individuals.
The new subjects were primarily college students from Auburn. Four or five training images of each
new subject were collected offline. All training images for each individual were collected within a one
minute interval. Constraints on the data were constant lighting conditions and a neutral background.

Subjects talked, changed expressions and ate cookies during the image grabbing process.

They implemented the backpropagation algorithm using a commercially available neural network
design application. A single person verification network was implemented and trained with the

following empirically derived parameters for each test subject:

o Input nodes: 1400 (raw pixels)

o Hidden nodes: 20

Output nodes: 1 (verfication)

Momentum: 0.50

Hidden layer learning: 0.30

Output layer learning: 0.15

o Random initialization of weights from —0.1 to 0.1 (uniformly distributed)

Input vectors were rescaled to range from —1 to 1

The data was sorted according to demographic categories such as sex, skin tone and hair color.
Various compositions of the data were used resulting in six different training sets. Some sets were
carefully organized by demographics while others were constructed by randomly selecting from all

subjects in the data base. Training sets were varied to include 5, 10, 15, and 20 percent of the data

2-5

base. The network was trained for 15,000 iterations then tested for accuracy. The errors were divided
into two classes; false acceptances and false rejections. Images which fell between classifications were

counted as “don’t knows”.

The network was trained most accurately using larger percentages of randomly drawn data. Error
rates were minimal when 20 percent of the data was drawn randomly for training. Using this training

set false acceptance was found to be 0.02 percent while false rejection was 8.7 percent (10).

2.4 Massachusetts Institute of Technology

Turk and Pentland have developed a system which locates and recognizes faces in pear-real-
time. Their system consists of a video camera, an image processor board, a Sun 3/160 dedicated to
motion analysis, and a second Sun SPARCstation which performs the recognition process; though both

algorithms could be executed on one computer.

Spatiotemporal Head
Ixy) Filtering Location
Xy,

Figure 2.3. MIT Face Recognition System
(18)

2-6

Segmentation of the head from the background is accomplished by the process shown in figure
2.3. Motion detection is accomplished by a standard frame subtraction algorithm. The motion is
tracked over time to provide input to the motion analysis algorithms. The motion analysis program
applies heuristics to the detected motion using simple rules such as “the head is the smaller blob on top
of the larger blob (body)” and “the head must move in a contiguous motion (doesn’t disappear at one
point and reappear in a new location)”. Once a head image is found a subimage is segmented out of
the original picture and sent to the recognition routines. The motion image is also used to provide an
estimate of scale in that the size of the blob that is assumed to be the moving head determines the size
of the subimage to send to the recognition stage. The subimage is rescaled to match the dimensions
(number of pixels in row and columns) of the eigenfaces. While this technique works reasonably well,
Turk proposes that the eigenfaces be scaled to several sizes to produce a system which is more robust
with regard to scale(18). Head tilt is also a problem which has been addressed by using symmetric
patterns for frontal visws, to develop symmetry operators which estimate head orientation. The image
can then be rotated to align the head; however, performance is marginal because the algorithm tends to

make all head objects circular.

Eigenfaces are the set of basis functions which span and define a face space. This basis set which
is optimally tuned to the training data is derived using the Karhunen Loéve principal component analysis
(7). Face images can then be transformed to face space by expressing them as a linecar combination of
the eigenfaces. Thus an entire set of large dimensional images can be reduced to a very low number
of coefficients. The coefficients for each training image and the identity of the individual in the image
are stored in a data file for future recognition. Prototypes are taken at 15 degree increments to make

the system more robust.

27

Recognition is carried out using a nearest neighbor classifier. Candidate faces detected by the
motion system are transformed to face space where the coefficients of the input face are compared by
Euclidean distance to each face in the training set. The recognition system runs in a loop and outputs

an image every time a face is recognized, which could be as much as two or three times per second.

Limited testing has been accomplished using a training set of four subjects with two prototypes
for each subject. Three KL coefficients were used as the feature set. The test set consisted of seven
images, two images of subjects with images in the training set, three images of subjects who were not
included in the training set, a filtered and subsampled version of one of the original training images, and
a noisy version of one of the original training images. The classifier was set with a threshold of 20.0.
The system correctly classified the two test images with corresponding training images. It correctly
classified the unknown images as unknown (in that they fell below the 20.0 threshold). The filtered
image was correctly classified despite the effects of additional processing; however the noisy image

was pushed outside the threshold for correct classification.

2.5 University of California San Diego

Garrison Cottrell of the Institute of Neural Computation UCSD has investigated a face recog-
nition network which performs feature extraction and classification using back propagation neural
networks(1). As with Turk and Pentland, Cottrell’s feature set is holistic consisting of a basis set of
images he refers to as holons. These images are very similar in appearance to Turk’s eigenfaces (see
figure 2.4). To extract these features, Cottrell passes manually collected 64 x 64 pixel images through a
two layer auto-associator network consisting of 4096 input nodes, one for each pixel in the input image,
40 hidden layer nodes, and 4096 output nodes (see figure 2.5). The function of the auto-associator is

to reproduce the same image at the output as that received at the input for all images in the training set.

2-8

Once the hidden layer is trained the output layer is removed and the response of the original hidden
layer is input into a single layer backpropagation network. This new network is configured with an
output node for each subject in the training set. The network is then trained on the training set using the
original hidden layer weights derived from the previous auto-associative network. Once the network
is trained, images are recognized by putting them into this new network and observing the output node
which gives the maximum response. The subject which corresponds to this output node is the person

in the test image.

Figure 2.4. Identity Net Holons
3)

Using this technique Cottrell trained the network with images of 10 males and 10 females.
All subjects were UCSD college students. Images were manually centered and brightness as well as
variance was normalized before training began. No mention is made of how many images of each
person were actually trained on; however, each individual was asked to feign 8 different emotional
expressions as data for additional tests concerning recognition of facial expression. Thus the training
set consisted of at least 160 faces. The recognition accuracy for the system was 99 percent for all faces

in the test set.

29

Auto-association Network Classification Network

4096 Output nodes 20 Output nodes

4096 Input nodes 4096 Input nodes

Figure 2.5. UCSD Recognition Systemn
®

2.6 Air Force Institute of Technology

As stated previously, two researchers at AFIT collaborated on their thesis efforts to jointly inves-
tigate orthogonal feature sets. Suarez investigated the Karhunen Loéve Transform (KLT) while Goble
researched the Discrete Cosine Transform (DCT). They worked together to develop the supporting
software necessary to test their feature extraction algorithms. Consequently, a very good foundation
for an end-to-end face recognition system was produced. The algorithms they developed include
preprocessing, feature extraction, and a nearest neighbor classifier in addition to each researcher’s
particular transform. They collected an image database of 55 subjects with four training and two test
images for each subject. The 128 x 128 pixel images were manually collected in a very controlled
environment using a commercially available frame grabbing application. In collecting the images,

subjects sat in front of a neutral background at the same distance and looked directly into the camera.

2-10

All pictures of each subject were taken within minutes of each other under constant lighting condi-
tions. The images were then preprocessed using a correlation algorithm first to center the subject in
the picture; then a gaussian windowing routine was used to highlight the center of the image (facial
features) and de-emphasize the outer edge of the picture (the background). After another run through

the centering algorithm the image was then transformed by either KLT or DCT.

2.6.1 Karhunen Loeve Transform In Suarez’s system, figure 2.6, the images would now be
used by the KLT routine to create a basis set of images called eigenfaces. These images are then used
by a reconstruction algorithm to calculate the coefficients of the training images in face space. Suarez

tested the KLT feature set for single person verification and multiple person recognition.

For single person verification he trained a backpropagation neural network configured with five
input nodes, two hidden layer nodes, and two output nodes. The training set consisted of two classes
of images, targets and non-targets. 16 training images were used for each class. He extracted five
coefficients for each image and used these features to train the network using the hold one out method to
train and test. Using this method he achieved a 92 percent recognition rate for single person verification.

The results do not show individual results for false acceptance and false rejection.

Suarez tested the KLT feature set for multiple person recognition using only the nearest neighbor
classifier. For this test he used four training images for each of 55 test subjects. He extracted 16
coefficients for each image. The feature set was tested using two test images of each subject, collected

on the same day as the training images. He achieved a 95 percent recognition accuracy for this test(17).

2-11

Figure 2.6. KLT Feature Extraction Process
an

2-12

2.6.2 Discrete Cosine Transform In Goble's system, figure 2.7, the images are directly
transformed by the DCT software. The coefficients for each image, as well as the name of the subject

in the image, are stored in a data file.

Window
Input Image | Jp»- and

Take DCT (nput
of < | Eigenvalues
Sub-Blocks to Net

Figure 2.7. DCT Feature Extraction Process
)

Goble performed the same single person verification test using DCT as Suarez did using KLT.
His training set also consisted of four images each of 55 people. The test set contained two images of
each of 55 subjects. His feature set differed in that he used 7 DCT coefficients for the backpropagation
neural net as opposed to Suarez’s five coefficients. His false accept rate was 2 percent while his false

reject rate was 3.5 percent.

2-13

For the multiple person recognition test Goble extracted 20 DCT coefficients from four training
images of 55 different subjects. He tested using two test images of each subject and only used the

nearest neighbor classifier. This resulted in a recogntion accuracy of 95 percent(S).

2.7 Summary

In this chapter the operation, training, and testing procedures of several face recognition systems
have been described. The performance of these systems are used as benchmarks by which to gauge
the system developed in this thesis. Many research efforts have achieved various levels of success
in developing the image collection, segmentation, feature extraction, and classification algorithms
necessary to perform face recognition. A common thread in each effort described here is that each
utilized holistic or global feature sets; however, the specific method employed by each varies greatly.
Also, it is apparent that each of these systems has been tested under laboratory conditions which do not
necessarily reflect a real world environment. The most common weakness was that test and training
images were collected in a single sitting. In a practical application, training images can be collected
at a single sitting if desired but test images must be collected throughout the operating lifetime of
a face recognition system. In addition, constraints such as neutral background as well as constant
distance, position and lighting should be eliminated. The algorithms should be integrated into a single,
self-contained application capable of performing face recognition in an end-to-end process from image

collection thru preprocessing and feature extraction to classification.

2-14

1Il. Methodology

3.1 General

The main objective of this thesis was to implement and test an end-to-end, face recognition
system to determine the practicality of its use in real world environments such as an office. Three
versions of the system were implemented (see figure 3.1). All three versions make use of a common
front end to collect, segment and preprocess the images. This front end is the result of integrating
the preprocessing algorithms developed by Suarez(17) with a real-time image collection and face
segmentation algorithm developed by Gay(4). The difference in the three system versions concerns
the feature set and classifier utilized by the given version. The first version uses the Karhunen Loéve
Transform (KLT) feature set and a K-nearest neighbor (KNN) classifier. The second version maintains
the KLT feature set but employs a backpropagation neural network classifier (BPNNX8). Finally the
third version uses the Discrete Cosine Transform (DCT) as the feature set and inputs coefficients into

a KNN classifier. The software which implements these three versions is presented in APPENDIX A.

Feature Extraciion Classliicalion
Ogtions Optione
Neural Net
Claseltor
{ ar b7
Front End / \\ K-nearest
=

Figure 3.1. Three Versions of the Face Recognition System

3.2 Common Front End Processing

All versions of the software make use of a common set of front end processes. The function of
these processes is to collect an image of an individual and prepare it for whatever feature extraction
process is desired. The algorithms are the same regardless of which feature set or classifier is used or
whether the system is training or recognizing. The block diagram for the common front end is shown

in figure 3.2

Initial Image Segmented Image Gaussed Image

camera| | framegrabber

Figure 3.2. Common Front End System

3.2.1 Image Collection and Segmentation The segmentation algorithm developed by Gay in
a collatoral thesis(4) includes the capability to grab images in real time using a CCD camera and
a VideoPix image processing board (again refer to figure 3.2). The algorithm is based on motion
detection using frame subtraction and slope analysis to determine the portion of the image which is
most likely the head and segment that region from the 640 x 480 original image. The resulting image is
a 32 x 32 pixel image. The algorithm is for the most part independent of background although as stated

in chapter one, the assumption is that the only motion in front of the camera is the user. To an extent

3-2

the segmentation algorithm reduces sensitivity to scale that normally breaks down the KLT algorithm.
This is because the entire area of motion is mapped into the same 32 x 32 pixel image no matter what

distance the user is from the camera. Gay'’s thesis explains this side benefit in more detail.

3.2.2 Preprocessing as done by Suarez consists of two algorithms. The first procedure,
CENTER.C, does a correlation between a reference image and each input image. The reference image
can be any image where the subject is fairly well centerd in the picture. The offset of the peak correlation
is used to shift the contents of the image such that the face in each picture is centered. After the image
is centered it is multiplied by a gaussian window using GWIND.C. The logic here is to enhance the
inner part of the picture (the facial features) while de-emphasizing the outer portion of the image (the
background). The image is then again centered using CENTER.C; however the reference image is now
a gaussianed version of the original correlation reference. Suarez’s software has been modularized as
C procedures and the interfaces redesigned to automate the original process. CENTER.C was derived

from Suarez’s C_LATES.C. The modularized version of GWIND.C was not renamed.

3.3 Feature Extraction

As mentioned previously, two versions of the recognition system make use of a feature set based
on KLT. The third version employs the DCT feature set. The software which performs these functions

and the modifications made to the original versions are described in the following paragraphs.

3.3.1 Karhunen Loeve Transform The KLT software consists of two modules (see figure 3.3).
KLT.C calculates the average face of the training set as well as the basis set of eigenfaces from which
the KL coefficients are extracted. KLT.C is a modified version of Suarez’s KL.TRANSFORM2.C.

COEFFICIENTS.C calculates the coefficients which when multiplied by the eigenfaces in a linear

33

combination and then summed with the average face provide the least mean square error reconstruc-
tion of the original image. These coefficients are written to a data file along with the subject name
associated with those coefficients. There are two versions of the coefficients software. COEFFI-
CIENTS.C provides a data file of coefficients consistent with that required by the KNN classifier, while
NET.COEFFICIENTS.C results in a data file formated for the BPNN classifier. Both versions of the

coefficients routine were derived from Suarez’s RECON.C algorithm.

1642 001 MLP_TRN

Training Images

Figure 3.3. KLT Feature Extraction

3.3.2 Discrete Cosine Transform The DCT software consists of only one algorithm. The
algorithm simply calculates a specified number of DCT coefficients and stores them in a data file along
with the name of the subject associated with the image(see figure 3.4). The routine is a modified

version of Goble’s DCT.C algorithm and is called MDCT.C.

3.4 Classifiers

As mentioned before the face recognition system will be implemented in three versions. The

first two will differ in the feature set utilized with the first being the KLT and the second the DCT.

34

DCT

Training Images

Figure 3.4. DCT Feature Extraction

Both will send coefficients to a K-nearest neighbor classifier to do recognition. A third version will
again use the KLT feature set but the coefficients will be input to a backpropagation neural network for

classification. The algorithms which implement the two classifiers are described below.

test_coefs

m MLP_test

.C }——3> “You werm recognized ae hgay."

Figure 3.5. Back Propagation Neural Net Recognition Process

3.4.1 Backpropagation Neural Network The neural network algorithm used in this application
was developed in an earlier AFIT dissertation(13). These algorithms have been modifed and tested
in a collatoral thesis(8). The routine MLP.C is compiled in both a training configuration and a test

configuration. MLP_TRN is compiled without the no train (NOTRN) flag set while MLP_TEST is

35

compiled with NOTRN set. The difference between the two is that the training configuration includes
an iteration loop to update and learn the weights necessary to classifiy a given image in a training set.
The testing configuration is compiled to read the weight file which was stored in the training procedure,
pull in the coefficient file for the test image and output the name of the individual associated with the

output node which responds.

3.4.2 K-nearest neighbor K_NEAREST.C is an implementation of a K-nearest neighbor clas-
sifier where K is chosen to be the number of training images used for each face in the training set. As
shown in figure 3.6 the inputs to the classifier algorithm are the train_coefs file which was created in the
training phase, and the test_coefs file generated from the input image by the recognition software. The
resulting output is a print statement identifying the subject in the test image. The K-nearest neighbor
uses a scoring technique in which the prototype nearest the test image receives a score of K while the
second nearest neighbor receives a score of K-1. The most distant K neighbor receives a score of one.
After the scoring of the neighbors is complete, all of the scores for a given name are summed together.
The name associated with the highest score is selected as the identity to the test face. This procedure
eliminates inaccuracies associated with a simple nearest neighbor which are caused by outlier training

faces.

3.5 Training Software

The modular routines for feature extraction and classification, as well as the grab, segmentation,
and preprocessing routines can be combined to generate various versions of training and testing
programs where the feature extraction and/or classifier routine can be easily changed by calling a

different module. In addition programs can be written to use previously stored images (without

3-6

= “You were recogniaed as gey.’

Figure 3.6. K-nearest neighbor Recognition Process

performing a grab) and those images can either be preprocessed or not, depending on the designer’s
needs. Three training programs have been assemble from these modules to implement the versions of

the system outlined in this thesis. The descriptions of these programs are given below.

3.5.1 KLT KNN System TRAIN.C implements the KLT feature set and generates coefficients
in a format compatible with the K-nearest neighbor classifier. The flow of the program is shown
in figure 3.7. This program performs a user interactive training image collection, preprocesses the
images, forms the eigenface basis set and extracts the desired number of coefficients from the training
images. Those coefficients are then written to the TRAIN_COEEFS file to be used by the recognition

program. TRAIN.C is executed by entering the command "train” at the command line.

3.5.2 DCT KNN System TRAIN_DCT.C has much of the same functionality as TRAIN.C.
The exception is that the resuiting coefficients are calculated using the DCT rather than the KLT. The
gray box in figure 3.7 shows the alternate flow followed by TRAIN_.DCT.C. Like TRAIN.C this
program performs a user interactive training image collection, preprocesses the images, and extracts

the desired number of coefficients from the training images. Those coefficients are then written to the

37

TRAIN_COEEFS file to be used by the recognition program. TRAIN_DCT.C is executed by entering

the command "train.dct” at the command line.

o

Figure 3.7. TRAIN.C/TRAIN_DCT.C Flow

3.5.3 KLTBPNN System The flow diagram of TRAIN_NET.C is givenin figure 3.8. TRAIN_NET.C
implements the KLT feature set and generates coefficients in a format compatible with the multi-layer
perceptron classifier. This program performs a user interactive training image collection, preprocesses
the images, forms the eigenface basis set and extracts the desired number of coefficients from the

training images. Those coefficients are then used by MLP_TRN to calculate a set of weights to form

3-8

the decision surface which separates the training classes. These weights are stored in a weights file to

be used by the recognition software. TRAIN_NET.C is executed by entering the command "train_net"

at the command line.

Segmentation Training Images

12348 100

1348 010

p18642 00t
H

Figure 3.8. TRAIN_NET.C Flow

3.6 Recognition Software

For each of the three versions of training software, a comesponding version of recognition

software has been developed. The names and descriptions of those routines are given below.

3.6.1 KLT KNN System VERIFY.C implements the recognition routine utilizing the KLT
feature set and the k-nearest neighbor classifier (refer to figure 3.9). This routine performs a user
interactive test image collection process, preprocesses the test image and extracts the KLT coefficients
from that image. These coefficients are then sent to the k-nearest neighbor for classification. VERIFY.C

is executed by entering the command "verify" at the command line.

3.6.2 DCT KNN System VERIFY_DCT.C again, makes use of most of the modules used in
the KLT recognition software. The major difference is that the DCT coefficients are calculated for
the test image instead of the KLT coefficients. The program performs a user interactive test image
collection process, preprocesses the test image and extracts the DCT coefficients from that image.
These coefficients are then sent to the k-nearest neighbor classifier for classification. VERIFY DCT.C

is executed by entering the command "verify_dct" at the command line.

3.6.3 KLT BPNN System VERIFY_NET.C implements the recognition routine utilizing the
KLT feature set and the multi-layer perceptron classifier as shown in figure 3.10. This routine
performs a user interactive test image collection process, preprocesses the test image and extracts the
KLT coefficients from that image. These coefficients are then sent to the neural net classifier for
classification. VERIFY_NET.C is executed by entering the command "verify_net" at the command

line.

3-10

1

“You were recognized as krunyon.*

Figure 3.9. VERIFY.C Flow

3.7 Test Descriptions

In his thesis, Suarez evaluated his feature extraction software using a database of 55 users with
four images of each user(17). With the addition of the real-time grab and segmentation algorithms, the
constraints on the input images for this thesis can be relaxed to better emulate real world conditions.
Thus a new and much less rigid training set has been collected to more fully test the robustness of the

system.

3-1

“You were recognized as krunyon.”

Figure 3.10. VERIFY_NET.C Flow

The KLT KNN and KLT BPNN systems were evaluated using three different test methods and
two different databases. The first test gauged the accuracy of the systems for a moderate sized training
set collected over a short period of time. The second test utilized a training set of only four people but
provides detailed results of performance over a seven day period of time. The third test made use of
the previous training sets and provides a very detailed evaluation of the systems performance over a

large number of recognition attempts. The following sections provide the details of each test.

3-12

3.7.1 23 Subject - Two Day Test The data set consisted of two sets of images. The first set
contained 115 images, 5 images for each of 23 users. The second training set also consists of 115
images, 5 images for each of the same 23 users. The difference between the two data sets is that they
were taken on two different days. Same day recognition of the system was evaluated by first training
the system on 4 images each of the 23 subjects collected on the first day. The fifth image of each
subject was then input to the system as a test image. After that, the same procedure was accomplished
for the images collected on the second day. The system was trained with four of the five pictures of
each subject and tested with the fifth. The total number of correct recognitions for both days was then
summed together and divided by the total number of tests to arrive at a standard same day recognition
rate. The system was then trained on all 115 images from the first day and tested using all 115 images
from the second day. Conversely, the system was trained using the 115 images from the second day
and tested using the images from the first day. The total recognition accuracy for the two tests was
2gain calculated. Finally, the system was trained using two images of each subject from the first day,
and two images of each subject from the second day. The remaining fifth image for each subject for

each of the two days (total of 46 images) was then supplied as the test set for the system.

3.7.2 30 Subject Manually Segmented - Two Day Test To test the effect of the segmentation
algorithm on the overall recognition accuracy of the system, a data set which was collected in a collatoral
thesis was used. The data set consisited of 300 total images of 30 different subjects. Each subject had
10 images in the data set. 5 of the 10 images were collected at an initial sitting, and the remaining
5 were collected at a later sitting. The subjects were positioned in front of a neutral background at a
constant distance from the camera. The 23 Subject test procedure was performed using this data. The

results of the two test were compared.

3-13

3.7.3 Four Subject - Seven Day Test The objective of the second test was to determine if the
system improved when training images were taken over a period of time. To make this evaluation, a
training set of four users was collected over a period of seven days with 7 images of each user taken
everyday (four training images and three test images). The system was then trained using only the
images of the first day. The one day system was then tested using each of the 21 test images collected
over the seven day period. After recording the recognition score for the training set, the system was
trained again using images from both the first and second day. The 21 test images were then run again
and the score recorded. This additive training technique was continued, testing the 21 images each
time, until the full seven day training set was utilized. Recognition accuracy for each training set was

documented.

3.7.4 Long Term Recognition Test The objective of this test was to determine the recognition
accuracy for an individual user over many recognition attempts. Several of the training sets from
previous tests were used. Three tests were run using the KLT versions of the 23 Subject - Two Day
Test data. The systems were trained using the same day, different day, and multiple day versions of the
23 subject training images. Each system was then trained using the best results from the Four Subject
training set. Ten recognition attempts were made on both systems each day for ten days (a total of 100

recognition attempts for each system) with the same person attempting to be recognized each day.

3.8 Summary

Three versions of a face recognition application are developed in this thesis. The difference
in the three versions are the variations of the feature extraction and classification algorithms used.

The first version uses the Karhunen Loéve Transform to extract features and a K-nearest neighbor as

3-14

the classifier. The second version also makes use of the KLT but feeds the coefficients obtained to a
backpropagation neural network classifier. Finally, version three uses the Discrete Cosine Transform
to extract the features which are then input to a K-nearest neighbor classifier. The KLT based systems
will be analyzed in a series of recognition tests to establish benchmark accuracies. The results of these

tests are reported in the next chapter.

3-15

IV. Results

4.1 Introduction

This chapter describes the results of tests performed on the face recognition application developed
in this thesis. Three separate versions were implemented in this thesis. All have the same image
collection, segmentation, and preprocessing routines. They differ in the feature extraction algorithm
and/or the classification scheme. The first version is based on a Karhunen Loéve Transform (KLT)
feature extraction algorithm and makes use of a K-nearest neighbor classifier (KNN). The second
version differs in that it employs a Backpropagation Neural Network (BPNN) classifier as opposed
to the K-nearest neighbor. These two versions will be tested to document benchmark accuracies to
compare against applications developed by other researchers. Finally, the third version which is based
on the Discrete Cosine Transform (DCT) feature extraction algorithm and uses the K-nearest neighbor
classifier was implemented to demonstrate the ability to easily make updates, changes, or replacements
to any algorithm in the application.

Testing was accomplished using five image sets, each differing in the number of subjects and the
number of sittings over which the images of a particular subject were collected. Various combinations of
training and test images were drawn from these five data sets to explore the strengths and weaknesses of
each version of the recognition application. All images were collected with the grab and segmentation
routines developed for the recognition applications with the exception of one set of images which was
manually segmented to evaluate the effect of automated segmentation on the overall accuracy. The five
tests are denoted by the image set used for the test and are uniquely defined by the number of subjects
and the time period over which the images were collected. The tests which made use of segmented

data are:

4-1

e 23 Subject - Two Day Test
e Four Subject - Seven Day Test
o Single Subject Verification (Combination of Previous Image Sets)

o Single User - Long Term Test (Collected Over Several Weeks)

The 30 Subject - Two Day Test made use of images which were manually segmented. The details

and results of each test are described in the following paragraphs.

4.2 23 User - Two Day Test

The purpose of this test was to determine the accuracy of the system for a fairly large number
of subjects where the training and testing images were collected on different days. The image set used
consisted of a total of 230 images, ten images for each of 23 subjects. The first five images of each
subject were collected in an initial sitting. The last five images of each subject were collected a number

of days later in a second sitting.

The feature set for the KNN system consisted of eight coefficients while the BPNN made use of
20 coefficients and 40 hidden layer nodes leading to 23 output nodes (one for each subject in the image
set). Rather than use the same number of coefficients for each version of the application, the number of
coefficients for which the algorithm seemed to perform best was used. This best number of coefficients
was determined in an iterative trial and error process. Three versions of the test were run to evaluate
the recognition accuracy of both the KLT/K-nearest neighbor(KNN) and KLT/neural network (BPNN)

recognition applications.

4-2

Table 4.1. Three test results using image sets collected over two days. Results are given for test
images collected on the SAME DAY as the training images, a DIFFERENT DAY than
the training images, and for test and training images collected over MULTIPLE DAYS.
Columns one and two are for 23 class data which was automatically segmented. Columns
three and four show the results of comparable tests using 30 class data which was manually
segmented. The KNN results are based on an eight coefficient feature set while the BPNN

used twenty coefficients
L KNN [BPNN | Manual Segment KNN | Manual Segment BPNN |
[SAME DAY AVG |18 [76% [%% [97% |
DIFFERENT DAY AVG [29% | 34% | 40% [53% |
[MULTIPLE DAY RESULT | 67% | 74% | 85% [95% |

4.2.1 Same Day Test The purpose of this test was to obtain a recognition accuracy which could
be compared to the tests performed by Suarez(17). Suarez’s images were collected during a single
sitting for each subject and had constraints such as neutral background, constant distance, etc., in order
to appropriately test the KLT feature set. The aim of the current test is to determine the decrease in
recognition accuracy due to loosening those constraints and allowing the segmentation algorithm to

locate the subject in an uncontrolled background.

Both the KNN and BPNN applications were initially trained using four images for each of 23
subjects. A fifth image of each subject, which was not included in the training set, comprised the test
set. Both the test and training set images for each subject were taken at the initial sitting. The 23 test
images were input to both the KNN and BPNN system. Individual scores were then calculated and
recorded for each system. Following that each system was retrained using four images of each subject
taken at the second sitting. The test set consisted of the fifth image for each subject also taken at the
second sitting. Both the BPNN and KNN were again tested on the second 23 image test set. The
recognition scores for both systems were again determined and the score form the first and second days

were averaged together to determine an overall same day recognition score. Table 4.1 shows that the

4-3

KNN achieved an overall same day score of 78 percent while the BPNN correctly identified 76 percent
of the test images These numbers are significantly lower than the 95% Suarez(17) achieved using his

data set due to the constraints Suarez used in gathering his data (see Effect of Segmentation section).

4.2.2 Different Day Test The purpose of this test was to determine the potential decrease in
recognition accuracy due to training on a set of images and then testing on images of the same subjects
but collected at a later date. The training set consisted of four images of each subject collected on the
first day. The test set was the five images of each subject collected on the second day. The recognition
score for both systems were calculated and the training and test sets were then reversed such that the
training set was made up of four images for each subject from the second day and the test set was the
five images of each subject collected on the first day. The recognition accuracy was again determined
and the results of the two tests were averaged into an overall score. For this version of the test, the
KNN decreased to an overall score of 29 percent while the BPNN fell to 34 percent (see table 4.1).
As expected the accuracies are markedly lower than those of the SAME DAY TEST. It appears that
subtle changes in both the subject (hairstyle, facial features, clothing) and the environment (lighting,

background bordering the user’s face, distance to camera) have enough effect to cause errors to occur.

4.2.3 Muiltiple Day Training The purpose of this test was to determine if the decrease in
accuracy due to training and testing on different days could be overcome by training on images from
both days. In addition this test determines to an extent whether or not superposition applies to the
Karhunen Loéve Transformation. The expectation was that if the training images were used from two
separate days and only images collected on those two days were included in the test set, the resulting

recognition accuracy should be close to the average recognition accuracy of the same day tests.

Both the KNN and BPNN systems were trained using four training images of each subject from
each of the two collection days. The test set consisted of the remaining two images, each collected on a
different day, of each subject. The KNN raised to an accuracy of 67 percent while the BPNN returned
to 74 percent. While the BPNN was somewhat close to the original same day accuracy, the KNN result
was low to be considered approximately equivalent to the previous score. Here it seems as though the
BPNN can better generalize with the limited data available such that the effect of subtle changes in the
environment and/or the user can be de-emphasized. Given a greater number of training images, both

systems would tend toward their respective SAME DAY TEST accuracy.

4.3 Effect of Segmentation

The purpose of this test was to determine the change in overall accuracy of the system due to the
segmentation algorithm. To perform this test, a data set was obtained from a collateral thesis effort(8).
This data set consisted of ten images each of 30 different subjects. Like the original data set, five
images of a given subject were taken during an initial sitting and the remaining five were collected
at a later sitting. The difference was that this data set was collected in a controlled environment
(neutral background, constant distance from camera, and careful positioning of the test subject) and

segmentation was performed manually.

The Same Day, Different Day, and Multiple Training Day tests were repeated using the new
images. The results as shown in columns three and four of Table 4.1 show that the segmentation
algorithm decreases overall accuracy by approximately 20 percent. There are several factors which
contribute to the lower auto-segmentation score. The segmentation algorithm is based on the user’s
motion envelope during the image collection period. If displacement is greater during one image than

that of the next, the scale may be somewhat different. The KLT is very sensitive to scale(17) as well

4-5

as shift and rotation. Shift is not as much of a problem due to the correlation routine used to center the

subject in the image. Sensitivity to scale could be reduced by gathering more training images.

4.4 Four Subject - Seven Day Test

The purpose of this test was to provide a more detailed analysis of the sensitivity of both the KNN
and BPNN applications to images taken over time. While the 23 user test points out the detrimental
effects of time on large systems, the four user test attempts to provide a solution to the problem albeit
for a smaller number of users. The data set for this test was made up of 196 images. There were four
individuals in the data base with 49 images each. Each subject made seven visits to the lab to have
images collected. Four training and three test images were collected for each subject each day for a

total of 28 training images and 21 test images for each of the four people.

The procedure for testing was an iterative process. First each system was trained on each person’s
four training images from day one and then tested on all 21 test images of each person. The system
was then retrained using the training images from the second day in addition to the first. The accuracy
of the system was again tested using all 21 test images for each subject. The system was then trained
using three days of training images, tested, trained again, and so on until the training images for all

seven days had been used.

46

Seven Day Test Using KNN
100 ; T ; T

80

6 o -

Accuracy

40 -

20

1 2 3 4 5 6 7
Training Day

Figure 4.1. Recognition accuracies for four class data. Four KLT coefficients were used. The training
and test sets were collected over seven days. The same test set is used for every training
day and includes all test images from all seven days. The training set for each column
consists of all training images collected up to and including the training day listed on the
X-axis.

4.4.1 K-nearest neighbor The KNN system was trained using four KLT coefficients for each
image. This number was determined based on the results of the 23 subject test and differs with the
results of Suarez(17) who determined that the number of coefficients used should be roughly equal to
one third the number of classes to be recognized. It appears that as the number of training images
increase for each class, the number of coefficients must also increase in order to adequately separate
them in KL space. Suarez always used four training images per class. No hard and fast equation
involving the number of training images and the number of classes is as yet apparent. The results for
each iteration of the KNN system are given in figure 4.1. Notice that the accuracies decreased on day

four and six even though the training set contained more training images.

Table 4.2 shows the accuracy for a given test set at each training iteration. It was expected that

the accuracy for each training set would fall off drastically once the test sets which had no corresponding

47

Table 4.2. Recognition accuracies for four class data using a K-nearest neighbor classifier. Four KLT
coefficients were used. The seven test sets were collected on each of seven days. Each
column shows the accuracy for a given day’s test set as the system is iteratively trained on
the images from an increasing number of training days.

| [Train 1 | Train 1,2 | Train 1-3 | Train 1-4 | Train 1-5 | Train 1-6 | Train 1-7 |

Prototypes | 4 8 [12 16 20 24 28 |
TestSetl |92% |100% |92% | 83% 100% | 92% 92%
TestSet2 |58% | 58% 67% 58% 75% 58% 75%
TestSet3 |67% | 83% 92% 83% 100% 83% 92%
TestSetd |67% | 100% | 92% 83% 100% | 92% 100%
TestSetS |67% | 58% 75% 75% 75% 75% 92%
TestSet6 | 50% | 83% 83% 67% 61% 75% 83%
TestSet7 [67% | 92% 100% 100% 100% 100% 100%
[OVERALL [67% [82% [8% [82% [88% [82% [%9% |

training images in the training set had been reached; however, the accuracy for a given test set does
not seem to correspond to whether it has images in the training set or not. These results show that
differences in scale, shift, and rotation are more important than day to day differences in the subject
and/or the image collection environment. Note also that the accuracies for all test sets in column one
are much higher than the different day results from the 23 class KNN test althought with the exception
of the number of classes, these tests are very much the same procedure. The reason the results are so
much higher for the four class test is that the statistical chances of guessing correctly are much higher
for four classes than for 23 classes. In addition there is less ambiguity or overlapping with four classes
than with 23 classes, even though eight coefficients were used in the 23 class test and only four were

used in the four class test.

4.4.2 Back Propagation Neural Network The network was configured with 20 input nodes,
40 hidden layer nodes and four output nodes. Again, this configuration was based on results from the

previous 23 User Test. The results for each iteration of the BFNN system are given in figure 4.2. Here

4-8

the recognition accuracy continually increased as the training images from each day were included in
the training set. This differs with figure 4.1 where the accuracy was sometimes lower after adding a
new day of training images. This leads to the conclusion that the BPNN classifier generalizes more

effectively on the available training images than does the KNN.

Seven Day Test Using BPNN
100 v T Y Y

80

60

Accuracy

40

20

Training Day

Figure 4.2. Recognition accuracies for four class data using a BPNN Classifier and 20 KL coefficients.
The accuracy is four 21 test images taken 3 per day for 7 days. The system was first
trained using data from day 1, all 21 test images were tested and the system trained again
using day 1 and day 2 training data. This iterative process continued until the final system
was trained on all 7 training sets. The columns represent the accuracies of the entire test
set on each of these systems.

Table 4.3 shows the accuracy for a given test set at each training iteration. In general, recognition
accuracy does increase for each test set with the addition of a new day of training images. Again this is
due to the ability of the BPNN to generalize on the training images. Also note that test sets with outlier
problems score low using initial training sets but improve to 100% accuracy after several training sets

are added to the system (see test set 6).

49

Table 4.3. Recognition accuracies for four class data using a BPNN Classifier and 20 KL coefficients.
The accuracy is four 21 test images taken 3 per day for 7 days. The system was first trained
using data from day 1, all 21 test images were tested and the system trained again using
day 1 and day 2 training data. This iterative process continued until the final system was

trained on all 7 training sets. The columns represent the accuracies of the entire test set

on each of these systems.
[~ [Train 1 | Train 1,2 | Train 1-3 | Train 14 | Train 1-5 | Train 1-6 | Train 1-7 |
[# Coefficients [4 |8 [12~ 16 20 24 28 |
Test Set 1 92% | 100% 100% 92% 100% | 100% 100%
Test Set 2 5% | 15% 75% 92% 92% 100% 100%
Test Set 3 2% | 92% 100% | 92% 100% 100% 100%
Test Set 4 2% | 92% 92% 100% | 92% 100% 100%
Test Set 5 5% | 92% 92% 100% 100% 100% 100%
Test Set 6 58% | 83% 75% 83% 83% 100% 100%
Test Set 7 92% | 92% 92% 100% 100% 100% 100%
[OVERALL [82% [8% [8% [9%4% |95% [100% | 100% |

4.5 Accuracy versus K for the K-nearest neighbor

Having run several tests to this point using the K-nearest neighbor voting scheme as a classifier,
the data was analyzed to determine the most effective value of K for the algorithm. Two plots were
made, one using the results of the fourth day of the Four Subject - Seven Day Test, and the other the Long
Term Recognition Test results using the training data of the 23 Subject - Different Day Test with the
KNN classifier. Figure 4.3 shows that accuracy increases with K while figure 4.4 shows that accuracy
decreases with K. While the results of theses tests seem to be contradictory, further examination reveals
that these systems represent two very different feature spaces. The eight coefficient feature space of the
23 class problem is of much higher than that of the four coefficient four class problem. Consequently,
a more complex set of classes can be separated in that space. However, there are very few prototypes
to define the boundaries of these classes. The sparse number of prototypes assign too much importance

to a given prototype which may or may not be an outlier from another class. The results need to be

410

averaged to arrive at a more correct solution. Recognition accuracy won’t be too good regardless of

the value of K due to poor boundary definition.

Accuracy vs. K

100

80

Accuracy

Figure 4.3. This graph shows the recognition accuracy obtained by testing 100 test images of the
same subject collected over several months. The training set consisted of 23 classes with
8 prototypes collected four at a time on each of two days. Each column represents the
accuracy associated with a particular K value for the K-nearest neighbor algorithm.

On the other hand the featire space defined by the second set of parameters is not quite as
voluminous as the previous system; however, it contains only four classes. These classes are populated
with a fairly large number of prototypes as compared to the rpior system. This dense population of
prototypes provides fairly good results no matter what value of K is chosen. Still, the accuracy can
be increased by reuding the number of prototypes used in the determination because prototypes on the
fringe of a given class do not use prototypes on the fringe of some other class in the calculation. K

should be kept to a value of 1 or 2.

4-11

Accuracy vs. K

100

95
&
5 90 brtrrt
] V/’ 2
< 7z

7
.
7

1 23 456 7 8 910111213141516
K

80

Figure 4.4. This graph shows the accuracy of testing 21 test images collected 3/day over 7 days on
a system which was trained with 16 prototypes for each class. These prototypes were
collected over 4 days. Each point on the curve represents the accuracy associated with a
particular K value for the K-nearest neighbor algorithm.

4.6 Long Term Recognition Test

The purpose of this test was to simulate the login activity of a single user over a long period of
time. The data set collected for this test is made up of a single user. There 100 images in the data set
were collected five or ten at a time over a period of several weeks. All 100 images are used as a test
set for seven of the previously trained systems. The configurations used from the 23 Subject - Two
Day Test were both the KNN and BPNN version of the Different Day and Multiple Day Tests. The
configurations tested in detail from the Four Subject - Seven Day Test were BPNN Day 7 and Day 6 as

well as the KNN version of Day 7. Results for the test are given in table 4.4.

The difference between original results and the results of this test differs depending on what
systemis tested. Both versions of the different day test seemed to show improved recognition capability

on the order of a 15

4-12

Table 4.4. All systems listed in column one were trained in previous tests. The accuracies obtained
in the original test are shown in column two. Column three shows the accuracy of the
given system when the original test set is replaced with a test set consisting of 100 images
of a single subject collected over several weeks. The subject was a member of all previous
training sets though none of the 100 images in the new test set were used in any training

set.

[| # Classes | # Coefficients | Original | Long Term |
KNN Different Day | 23 8 3% [50% |
BPNN Different Day | 23 20 37% 51%

KNN Muitiple Day | 23 8 67% 69%
BPNN Multiple Day | 23 20 74% 55%
KNN Four - Day 7 4 4 90% 24%
BPNN Four-Day7 | 4 20 100% 97%
BPNN Four - Day 6 | 4 20 100% 100% |

4.7 Single Person Verification

The purpose of this test was to determine the verification accuracy for a BPNN verification
system. The data set for this test was made up of two classes, a target class and a non-target class. The
non-target training images consisted of 2 images of each of 22 subjects. Each of the two images was
collected at separate sittings. The target training set consisted of 30 images of a single subject. Five
images were collected at sitting one, five more at sitting two, and the last 20 images were collected
four at a time over five sittings. The target images made up roughly forty percent of the training set
with the non-target images making up the remaining sixty percent. The test set for the non-target class
consisted of two images each for each of 22 subjects and again each image was collected at separate
sittings. The target test set consisted of 10 images of the single subject. The first nine images were
collected three at a time over three sittings and the tenth image was collected at a fourth sitting. All
test images had corresponding training images (the training images came from the same sittings as the

test images) but not all training images had corresponding test images.

4-13

The network was configured to accept twenty KL coefficients at the input layer. These inputs
feed forty hidden layer nodes and of course two output nodes signified the target and non-target classes.
The network was trained to a 100 percent accuracy on the training set in 600 iterations. The false

accept rate for the network was two percent, while the faise rejection rate was forty percent.

414

V. Conclusions

5.1 Introduction

This chapter states the conclusions formed by the results of the tests performed in chapter Four.
The chapter begins with the conclusions drawn from the 23 Subject - Two Day Tests. Next the results
of the 30 Subject, Manually Segmented - Two Day Test will be discussed. Insights provided by the
Four Subject - Seven Day Test are then be provided. Then a short discussion on the accuracy of the
K-nearest neighbor classifier versus the value of K will be given. Conclusions drawn from the Long

Term Recognition Test will then be shown, and finally, the Single Person Verification Test is discussed.

5.2 23 Subject - Two Day Test

This test addresses the problems associated with training a system to recognize based on images
taken at a specific instance in time and then expecting that training set to generalize to images taken
at any time later. This muitiple day problem causes large decreases in recognition a:curacy. The lose
in accuracy is the result of the subtle differences in both the image collection environment (such as
luminance, distance to camera, shift, position, and scale) and the subject (such as hair shape, beard
growth, facial appearance at different times of day) when viewed over a period of time. Little attention
has been given to this problem, certainly none of the systems described in the literature search of chapter
Two dealt with multiple day recognition. The two day test doucmented the fact that both the KNN and
the BPNN fell off significantly. The KNN score fell from 78% to 29% while the BPNN system went
from 76% to 30%. This problem can be overcome to a large extent by training over multiple days.
The effect of training on multiple days is that potential variations due to time can be accounted for in

the training set allowing the classifier to generalize over the differences. Using multiple day training

5-1

the KNN improved to 67% while the BPNN increased to 74%. The BPNN and KNN seemed to be
approximately equal in all tests performed in this section although the neural net classifier seemed to

regain more accuracy when trained over multiple days than did the K-nearest neighbor.

5.3 30 Subject Manually Segmented - Two Day Test

These tests indicated that the decrease in recognition accuracy due to the current automated
segmentation algorithm is very close to 20% regardless of the training set, test set, or classifier type.
It did appear that the neural net classifier substantially outperforms the k-nearest neighbor when using
the manually segmented data. The smallest difference was the KNN score 90% for the SAME DAY
TEST as compared to the BPNN score of 97%. The dropoff in recognition accuracy when training and
testing on different days was still very apparent. The KNN score dropped to 40% while the BPNN fell
to 53%. Both returned to their approximate SAME DAY values when trained over multiple days. In

general, the lose in recognition accuracy is not worth the ability to segment using the current routine.

5.4 Four Subject - Seven Day Test

The recognition accuracy for both the KNN and BPNN systems increased as the number of days
over which the systems were trained was increased. However, due to suspected outliers in some of
the test sets, the recognition score for the later test sets were as good or better than the scores of the
earlier tests sets even though the system had been trained on only one or two days of training images.
For instance, at training day 2 in table 4.2, test set 7 is at 92 percent while test set 2 is still only 58
percent. The same situation occurs in the BPNN table. Notice that test set two generally fell below the

score of later test sets even after the training set from day two had been included. Overall, the neural

net classifier performed substantially better for this particular series of tests than did the K-nearest

neighbor.

5.5 Accuracy Versus K for the K-nearest neighbor

The two tests determined to evaluate this relationship seem to contradict each other. The result
from the Long Term Recognition data for the 23 Subject Test would indicate that K should be as large as
possible. The result from the Four Subject Test indicates that the K-nearest neighbor should be changed
to a simple nearest neighbor for the optimal accuracy. To resolve this contradiction, the feature space
of the system under test must be examined. For the Long Term Recognition Accuracy Test, the system

is trained with the following parameters:

e 23 classes
e 8 KL coefficients
e 4 prototypes for each subject

e 92 training images total

The Four Subject Test is trained with the following parameters:

e 4 classes
e 4 KL coefficients
e 16 prototypes for each subject

e 64 training images total

53

These systems represent two very different feature spaces. The first set of parameters constructs
a higher dimension feature space which is then expected to support a more complex set of classes.
However, there are very few prototypes to define the boundaries of these classes. The sparse number
of prototypes assign too much importance to a given prototype which may or may not be an outlier
from another class. The results need to be averaged to arrive at a more correct solution. Recognition

accuracy won'’t be too good regardless of the value of K.

On the other hand the feature space defined by the second set of parameters is not quite as
voluminous as the previous system; however, it contains only four classes. These classes are populated
with a fairly large number of prototypes as compared to the prior system. This dense population of
prototypes provides fairly good results (>80 percent) no matter what value of K is chosen. But the
accuracy can be increased by reducing the number of prototypes used in the determination because
prototypes on the fringe of a given class do not use prototypes on the fringe of some other class in the

calculation.

5.6 Single Person Verification

Using a training set with a ratio of 60 percent non-target images to 40 percent target images
provides a verification system which is biased toward rejecting a given subject regardless if the subject
is of target or non-target class. The false reject rate of 40 percent is probably higher than the normal
user would tolerate. The false acceptance rate of 2 percent is good depending on the level of security

the system must provide.

54

5.7 Long Term Recognition Accuarcy

Some configurations of the system seemed to improve when tested with the Long Term Accuracy
test set. These systems include both versions of the Different Day Test and the KNN version of the
Multiple Day Test. The systems which showed a decrease in accuracy where the BPNN version of the
Multiple Day and the KNN version of day 7 of the Four Subject Test. The BPNN day 6 and day 7 Four
Subject training sets did extremely well for all images tested on them. The single person verification
configuration was also tested using the Long Term Accuracy test set and was found to provide a 41

percent false reject rate which was consistent with the score from the previous test set.

5.8 Comparison to Other Systems

Table 5.1 and 5.2 compare the performance of systems discussed in Chapter Two to the systems
developed in this thesis for both multiple recognition and single person verification. The WISARD
system provides the best performance of all same day tests; however, the system is expensive, very
complex and requires significant computational resources. In addition the WISARD, as well as the
other systems listed, are tested with test images collected at the same sitting as the training images. It
is logical to think that the accuracy for those systems would significantly decrease for images collected
over time. Finally, with the exception of the WISARD system, none of the recognition systems provides
any method of real-time image collection or automated segmentation (WISARD has no segmentation

but depends on huge number of prototypes).

| # Classes | # Sittings | # Protos | Accurach
WISARD 200 - 400 | 100%
UCSD 20 l 8 9%
Suarez 55 1 4 95%
Goble 55 1 4 95%
AFRM 50 1 4 73%
KNN System | 23 1) 78%
KNN System | 23 2 8 29%
BPNN System | 23 1 4 76%
BPNN System | 23 2 4 34%
KNN System | 4 7 28 90%
BPNN System | 4 7 28 100%

Table 5.1. Comparison of all Multiple Recognition Systems Discussed

Sittings | # Protos False Reject [False Accept |
WISARD 1 200 - 400 0% 0%
Los Alamos 1 5 8.7% 0.02%
Suarez 1 16 8% 8%
Goble 1 16 2% 3.5%
Current System | 6 46 Non-target/30 Target | 40% 2%

Table 5.2. Comparison of all Single Person Verification Systems Discussed

56

VI. Software Documentation

6.1 Makefile

Face Recognition Makefile

#4844 2 Nov 92

HOST=grimm

HOME=/data5/krunyon

BIN = § (HOME)/bin/$ (HOST)

#BIN=./

BASEDIR=/usr/1.0-VFC

VFCLIB_DIR=$ (BASEDIR) /vfc_lib

VFCSYS_DIR=$ (BASEDIR) /sys

GRAB_ROUTINES=z_set_vfc_hw.o z_grab_gra.o z_store_image.o
MOTION_ROUTINES=$ (GRAB_ROUTINES) 2_find_diff.o z_median.o z_motion.o
SEG_ROUTINES=$ (MOTION_ROUTINES) z_outline.o z_seg_regions.o z_reduce.o \
z_segment .o

train : train.c seg_grab.o $(SEG_ROUTINES) display.o center.o \
gwind.o rescale.o nrutil.o fourn.o klt.o eigsrt.o jacobi.o \
coefficients.o .

cc -g -I$(VFCSYS_DIR) -I$(VFCLIB_DIR) -0 train train.c \
seg_grab.o \

$ (SEG_ROUTINES) $(VFCLIB_DIR)/libvfc.a \

display.o \

center.o \

gwind.o \

rescale.o \

nrutil.o \

fourn.o \

klt.o eigsrt.o jacobi.o \

ci:fﬁcients.o \

verify : verify.c grab.o seg_grab.o $(SEG_ROUTINES) display.o center.o \
gwind.o rescale.o coefficients.o k_nearest.o nrutil.o fourn.o

cc -g -I${VFCSYS_DIR) -I$(VFCLIB_DIR) -0 verify \

verify.c \

grab.o \

seg_grab.o \

$ (SEG_ROUTINES) $(VFCLIB_DIR)/libvfc.a \

display.o \

center.o \

gwind.o \

rescale.o \

coefficients.o \

k_nearest.o \

nrutil.o \

fourn.o\

train_dct : train_dct.c seg_grab.o $(SEG_ROUTINES) display.o center.o \
gwind.o rescale.o nrutil.o fourn.o mdct.o

cc -g -I$(VFCSYS_DIR) -I$(VFCLIB_DIR) -o train_dct train_dct.c \
seg_grab.o \

$ (SEG_ROUTINES) ${(VFCLIB_DIR)/libvfc.a \

display.o \

center.o \

gwind.o \

rescale.o \

nrutil.o \

fourn.o \

mdct.o \

-1lm

verify_dct : verify_dct.c grab.o seg_grab.o $(SEG_ROUTINES) display.o \

center.o gwind.o rescale.o mdct.o k_nearest.o nrutil.o fourn.o
cc -g -I$(VPCSYS_DIR) -I$(VFCLIB_DIR) -o verify_dct \

6-1

verify_dct.c \

grab.o \

seg_grab.o \

5 (SEG_ROUTINES) $(VFCLIB_DIR)/libvfc.a \

display.o \

center.o \

gwind.o \

rescale.o \

mdct.o \

k_nearest.o \

nrutil.o \

fourn.o\

~-1lm

train_net : train_net.c seg_grab.o $(SEG_ROUTINES) display.o center.o \

gwind.o rescale.o nrutil.o fourn.o klt.o eigsrt.o jacobi.o \

net_coefficients.o

cc -g -I$(VFCSYS_DIR) -I$(VFCLIB_DIR) -0 train_net train_net.c \

seg_grab.o \

$ (SEG_ROUTINES) $(VFCLIB_DIR)/libvfc.a \

display.o \

center.o \

gwind.o \

rescale.o \

nrutil.o \

fourn.o \

klt.o eigsrt.o Jjacobi.o \

net_coefficients.o \

-1m

verify_net : verify_net.c grab.o seg_grab.o $(SEG_ROUTINES) display.o center.o \
gwind.o rescale.o net_coefficients.o nrutil.o fourn.o

¢c -g -I$(VFCSYS_DIR) -I$(VFCLIB_DIR) -0 verify net \

verify_net.c \

grab.o \

seg_grab.o \

$ (SEG_ROUTINES) $(VFCLIB_DIR)/libvfc.a \

display.o \

center.o \

gwind.o \

rescale.o \
net_coefficients.o \

nrutil.o \
fourn.o\
~-1m

retrain : retrain.c klt.o coefficients.o nrutil.o fourn.o eigsrt.o jacobi.o
cc -g -0 retrain retrain.c klt.o coefficients.o \
nrutil.o fourn.o eigsrt.o jacobi.o -1lm

seg_grab.o : seg_grab.c $(SEG_ROUTINES)

cc -g -I$(VPCSYS_DIR) -I$(VPCLIB_DIR) -c seg_grab.c \
$ (SEG_ROUTINES) \

$ (VPCLIB_DIR) /libvfc.a

center.o : center.c
cc -g -C center.c

display.o : display.c
cc -g -c display.c
gwind.o : gwind.c

¢c -g -c gwind.c

coefficients.o : coefficients.c
cc -g -c coefficients.c

net_coefficients.o : net_coefficients.c
cc -g -c net_coefficients.c

fourn.o : _fourn.c
cc -g -¢ fourn.c

nrutil.o : nrutil.c
cc -g -¢ nrutil.c

rescale.o : rescale.c
cc -g -C rescale.c

6-2

klt.o : klt.c
cc -g -c klt.c

mdct.o : mdct.c

cc -g -¢ mdct.c

jacobi.o : jacobi.c

cc -g -c jacobi.c

eigsrt.o : eigsrt.c

cc -g -c eigsrt.c

k_nearest.o : k_nearest.c

cc -g -¢ k_nearest.c

add_usr : add_usr.c seg_grab.o $(SEG_ROUTINES) display.o center.o \
gwind.o rescale.o nrutil.o fourn.o klt.o eigsrt.o jacobi.o \

coefficients.o

cc -g -IS(VFCSYS DIR) -1I$(VFCLIB_DIR) -o add_usr add usr.c \
seg_grab.o \

$ (SEG_ROUTINES) ${(VFCLIB_DIR)/libvfc.a \
display.o \

center.o \

gwind.o \

rescale.o \

nrutil.o \

fourn.o \

klt.o eigsrt.o jacobi.o \

coefficients.o \

#Grab Modules

z_set_vic_hw.o : z_set_vfc_hw.c

cc -g -I$(VFCSYS_DIR) -I$(VFCLIB_DIR) -c z_set_vfc_hw.c
z_grab_gra.o : z_grab_gra.c

cc -g -I$(VFCSYS_DIR) -I$(VFCLIB_DIR) -c z_grab_gra.c
z_store_image.o : z_store_image.c

cc -g -I$(VFCSYS_DIR) -1$(VFCLIB_DIR) -c z_store_image.c
z_reduce.o : 2z_reduce.c

cc -g ~-I$(VPCSYS_DIR) -1$(VFCLIB_DIR) -c z_reduce.c
#Motion Modules

z_find_diff.o : z_find diff.c

cc -g -¢ -I$(VFCSYS_DIR) -I$(VFCLIB_DIR) z_find_diff.c
z_median.o : z_median.c

cc -g -I$(VFCSYS_DIR) -I$(VFCLIB_DIR) -c z_median.c
z_motion.o : z_motion.c

cc -g -I$(VPCSYS_DIR) -I$(VFCLIB_DIR) -c z_motion.c
#Segmentation Modules

z.outline.o : z_outline.c

cc -g -I$(_VPCSYS_DIR) -IS(VI:'CLIB_DIR) -c z_outline.c
z_seg_regions.o : z_seg_regions.c

cc -g -1$(VFCSYS_DIR) -1${VFCLIB_DIR) -c z_seg_regions.c \
$(VFCLIB_DIR)/libvfc.a

z_segment .o : z_segment.C

cc -g -I$(VFCSYS_DIR) -1$(VFCLIB_DIR) -c z_segment.c
grab_one.o : grab_one.c $(GRAB_ROUTINES)

cc -g -I$(VFCSYS_DIR) -I$(VPCLIB_DIR) -c grab_one.c \

$ (GRAB_ROUTINES) \

$ (VPCLIB_DIR)/libvfc.a

6.2 train.c

train.c

ThisprogmmnsusedtouammcKL‘I\KNNsystem

The grab routine is called first to collect the training images.
nllirnageso[apmia:laruscrhavcbxncoﬂectcd,cxho[mcixnages
are preprocessed (centered and gaussian windowed).

LR R I IR N -

6-3

*« The pre images are then used by kL transform to

* ¢:t\',‘nu=nfn”:mssedvcmget'm:cmdauscrdt:temuned'y number of eigen faces.
*= The coefficients module is then called to extract the ki coefficients

* from the training images. Thesc coefficients, which are the end result
« of the training process are stored in train.coefs. All training images

» are stored in a folder called training.images for possible use in

* retraining the system at a later time.

t 3

« Written by: Ken Runyon

*

« Date: 21Jul92-31 Aug 92

*

* 4
#include <stdio.h>

#include <string.h>
#include *vfc_lib.h*
#include "globals.h"
int i

finished,

done,

[exsxesexx Make a Training Folder to Hold the Prototypes ss#xsx4
system("mkdir training_images*®);
/ Open the Training List File #
if ((Rist=fopen(*train_list®,"w+"))==NULL)

printf(*I can’t open the train list.\n®);
/ Open the Training Parameters File
fparam=fopen(*train_params®,"w");
Z)“"(.)‘" Prompt User for Number of Prototypes sss»xuad

ne = 0;
while ('done){

printf(* \nEnter the number of prototypes to be used for each user <1-20>: *);

scanf(* ¥d" ,&num_protos);

waste);
printf(*\n*);
%(numiprotos < 20) &£& (num_protos > 1))
ne = 1;

else
printf(*\nYou need to do at least 1 and at most 20.\n");

*

Enter Users Until You're Done sxssssxsrssnnd

while (!finished){
done = 0;
quit = 0;

lsxssexsxx Prompt User for User Name sxsxxnd

printf(* \nEnter the person's username <8 letters>: °);
gets(u_name);

printf(*\n*);

while(!done){

printf('\n'rhe name you entered was : $s\n®,u.name);
printf(*You can either re-enter a name or press return to continue.\n");

ffm(nu.namc).
(nu_name[0] == '\0’)
dope=1;

else{y()
s u_name,nu_name);
nttﬂ’amc[ms '\uO';

}
lsxxseexsxes grab training images of the user #

file_ptr{O]=fielKflist);
for (i=1; i< num_protos; |++){
num.train =

num_train++
spnntf(ﬁlcnalm, ts%d'.u.name.l).
Seg.
spnntf(ﬁlenamc. totdes® Su-name,i,”.gra*);
fprintf(flist,* $s\n" filename);

1}=ftell(flist
f ﬂlst.(ﬁlc.ptrm]—ﬁle.pn'[ll),l).
lesxsxsnsx Preprocess the training images ssxs»4
for (i=1; i<num_protos; i++){

fscanf(flist,* $s\n" filename);
center(SM. ,*correlate.ref" filename);
gwmd(SM WIDTH)
SM WIDTH *wind.ref" filename);
intf(filename, ” ts%d',u_name,n)
pla SM.WIDTH.filename,num_protos);
sprinti(filename, * sd%s* ,u.name,1," .gra*);

printf{* \nDo Another User? <y or n>: "),
gets(another,
while (! mt){
if ((another{0] == ‘n’) || (another{0] == 'N’))

ﬁmshed-r-[l]. ¢ r{0] D

quit=1;
else if ((another{0] == 'y’) || (another{0) = ' Y’)){

finished = 0,

quit=1;

}
clse {

printf("\n\nHit y if you want to enter another user.\nHit n if you're done entering users.

gets(another);
printf{*\n*);
}
)‘ttttﬂmtﬂm Decide how many cigenfaces you need sassxssnand
done = 0;
while ({done){
printf(* \nEnter the number eigenfaces you want to train on <%d>: °,
num.train/mm. |
wf('td ,&uset.coefs),

if ((user_coefs > 0) && (usercoefs < num_train)){
s = user.cocfs;

6-5

done=1;

else if (user.coefs == 13){
goua,oocl:fs = pum._train/mm_protos/3;,

¢
printf(* \nYou need to do at least 1 and at most %d\n°,num.train);

ngpm $d\n%d\ntd\nsd\n* ,SM.WIDTH,num_coefs,num.train, num_protos);
ist);

kl_transform(®train_list*, SM_.WIDTH, num.train);
[xxxxxxsnxxnx Make Coeflicients for All Training Images ##* s xxxs 24

if ((flist = fopen(*train_list*®, "r*))==NULL)
printf(*\nCollect can't open the training list.\n");

fweights = fopen(*train_coefs®,"w");

for (i=1; i<num_train; i++){
fscanf(flist," $s\n" filename);
sprintf(command, " $sts%s*,"mv ° filename, * training_images*");
c;o:gi&nems(SM \;IIDTH , num_coefs, filename, fweights);
b3 3

}clomﬂnst),
fcloﬁfwenghts),
system{*rm *.rle®);
system(' *.rec"),
ystem(*rm *.red*);
pnntf(\nTRAINING IS COMPLETE\n®);
} /END TRAIN®

6.3 train_net.c

train_net.c

This program is used to train a system based on KLT feature
extraction and & neural net classifier. The grab routine is first
called to collect the training images. Afier all images of a

verage

'mecoeﬂiacmsmodulensthenmlledwexmtheucoe ts
from the training images. coeﬂ‘icnentsarcstomdmadm
ﬁkmﬂedklt.dauobeusedbytbcncumlnetworktrammgal ithm.
mmmlmmtal Igorithm creates a weight file which will be used

ihasc The outputs of this code are 1) the kit.dat
ﬁk,Z)mesctupﬁ forlhcnetwod:,md.“l)rbcwetgmﬁkcrwed
by the network. Al training images
are stored in a folder called training_images for possible use in
retraining the system at a later date.

Written by: Ken Runyon
Date: 25Sep92

L IR 3K IR BE 3R R JE K IR N BE B K K N JE I K N N I N -

L S

#include <stdio.h>

#include <string.h>

#include *vfc_lib.h"

#include *globals.h*

#define NUM_LAYRS 2
#define WT.SED 1918940490

#define PARTSED 1191645590
#define RNDM.SED 123456789
#define MAXITS 500
#define OUTINT 100
#define ETAIN 0.15
#define ETAOUT 03
#define ETA.12 00

#define ALPHA 0S5

#define BATSZ 1

#define TRAINPCT 1.0
#defire NORM 1

{

lexnxxxaxs Make a Training Folder to Hold the Prototypes s «nid

system(*mkdir training_images*);

/ Open the Training List File ¢

if (Rlist=fopen("train_list®,"w+"))==NULL)
printf("I can’t open the train list.\n®),

/ Open the Training Parameters File

fparam=fopen("train_params®,w");

mvaattt Prompt User for Number of Prototypes *»ssx»$

= 9
while (!done){
printf(*\nEnter the number of prototypes to be used for each user <1-20>: *);
scanf(" $d° ,&num_protos);
waste);
printf(*\n*);
if ((numiprolos < 20) && (num_protos 2> 1))

else
printf(" \nYou need to do at least 1 and at most 20.\n");

L 'S

Enter Users Until You're Done ssssnsxsnnsend

6-7

while (!finished){
done = 0;
quit=0;

fesnxsssxx Prompt User for User Name sss2sa#

printf(* \nEnter the person'’'s username <8 letters>: *);
gets(u_name);

printf(* \n*);

while(!done){

printf(*\nThe name you entered was : $s\n",u.name);
printf(*You can either re-enter a name or press return to continue.\n®);

gets(m

nu.name);
if (nunamef0] == *\0’)
done=1;
else {

y(u.name,nu_name);
nunamef0) = ‘\0’;

num_class++;

[eesxxnxenss grab training images of the user ¢

file_ptri0]=flell(Rlist);

for (i=1; i< num.protos 1++){
aum_train =
spnntf(ﬁlename. %s%d'.u.name,n),
seg.grab(lename);

tf(filename, * $sades® Juname,,® .gra*);
intf(flist,* $s\n* filename);

1=ftell(flist
f lst.(ﬁle-Ptﬂol—ﬁle-P“‘[ll).l).

Iexsnenrss Preprocess the training images ##xusd
for (i=1; i<num_protos; i++){
fscanf(flist,* $s\n" filename);
center(SM._.WIDTH,"correlate.ref" filename);
gwind(SM_WIDTH, filename);
centerSM_WIDTH, *wind.ref" filename);
sprintf(filename, " $s%d " ,u_name,i);

lay(SM_WIDTH,filename,num_protos);
sprln’n (filename, * $s%d%s”,u_name,,” .gra");

prmtf(\nDo Another User? <y or n>: \n®);
gets(another,

while ('qmt){
if ((another{0} == 'n*) || (another{0] == *N*)){
finished = 1;
} quit=1;
else if ((another[0] == 'y’) || (another{0] == Y’
finished = 0;)¢ 0 "
quit=1;
}
else {
printf(*\n\nHit y if you want to enter another user.\nHit n if you're done entering users.

f another);
}gg:(lf('\n'));

}
}nnunnu Decide how many cigenfaces you need #xsnssennnd

done = 0;
while (‘done){

6-8

printf(" \nEnter the number eigenfaces you want to train on <%d>: *,num.train/3);
scanf(*® td‘ JSuser.coefs);

if ((user_coefs > 0) && (user_coefs < num._train)){
m-‘s = user.coefs;

else if (usercoefs == 13){
num._coefs = num_train/3;

=1,

€
printf(*\nYou need to do at least 1 and at most %d\n®,num.train);

lesxxunxxss Create the train_params file for the recogniton phase sxsxsxsuf

fpt?l.:g((‘l"ym)-am. %d\n%d\ntd\n¥d\n¥d\n* ,SM.WIDTH,num_coefs,num_train, num._protos, num.class);
C Ist);
fclose(fparam);

lexnxannsnxss Creste the setup file for the neural network sssxsnsssd

wifile,"klt .wts*);
%ﬁd&ﬁ% *klt. dast)).

hid_nodes = 2 * num._coefs;

hid_nodes2 = 0;

fset stffopen('setup .mlp*,"w");

(;sx(,x }d_rs\)n%d\n%d\n%d\n%s -store weights\n$d\n*' ,NUMLAYRS,WT_SED,PART_SED,RNDM SED,wt file,
tf(fset,*8d $d $d ¥d\n",num.coefs,hid_nodes,hid_nodes2,num_class);

&-ﬁtf(fsa. s -data\n¥d\n$f\n%f\ntf\ntf\nsd\ntf\ntd\n",
le, OUTINT.ETA_IN,ETA_OUT,ETA_1 2,ALPHA BAT .SZ, TRAIN.PCI‘.NORM).

fclose(fset);

Jesexsessnssx Calculate the basis set 4

kltransform{"train_list*, SM.WIDTH, num_train);

lexnnns Create the lookup table for the neural network sxxs»4
ftable=fopen(* 1lookup®,*w*);

/esssasxnssens Create the data file for the neural network sxssssknsessd

if ((flist = fopen(*train_list®, *r*)) == NULL)
prilff(*\nCollect can‘'t open the training list.\n®);

fweights = fopen(*k1t .dat","w");
fprintf(fweights, " $d\n%d\ n" ,num_coefs,num._class);

for (i=1; i<num_train; i++){
fscanf{flist,* $s\n" filename);
sprintf(command, " $s%s%s*,"mv °* filename, * training_images®);
ne(.col:(fﬁcnents(S;J -WIDTH, num_coefs, filename, fweights, ftable, num._class);
system{command);

l}close(mst).

fclose(fweights);

systen("rm *.rle°®);

system("rm *.rec*);

system(°*rm *.red");
system("mlp_trn®);

printi(’ \nTrRALINING IS COMPLETE\n®);
} /«END TRAINY

69

6.4 train_dct.c

* train_dct.c

*

= This program is used to train the system. The routine is first
* mllegtt?)coneamcmininghmm. Aﬂcraumwofa

* particular user have been collecied, each of the images are

. q;pmocssed (centered and gaussian windowed).

» med are then used by mdct.c to extract the first
s 64 ieats from m%mw

* Tti_zlc:ceoogqicienm.whicbmm. @uhfs All rainiog i

* 0 training process are stored in train_coefs. training images
= are stored in a folder called training._images for possible use in

* retraining the system at a later date.

»

= Written by: Ken Runyon

*

s Date: 22 Sep 92

*

‘ 4
#include <stdio.h>

#include <string.h>

#include "vfc_lib.h*
#include *globals.h*

num._coefs=7,

num.train,

file_pir{2]);
FILE «fparam,

=flist,
=fweights;

u.name[8),
nn.nmnel[%.
filename[20),
waste[2],
another{4];
main()
{
[sssxexsns Make 8 Training Folder to Hold the Prototypes *ssxsx#

system("mkdir training_images®);
/ Open the Training List File

if (flist=fopen("train_list","w+*))==NULL)
printf{*I can‘t open the train list.\n");
/ Open the Training Parameters File $
fparam=fopen(*train_params®,"w");
’"‘"(‘)‘". Prompt User for Number of Prototypes #sssax{
while (!done){
printf("\nEnter the number of prototypes to be used for each user <1-20>: *);
scanf(® %d " ,&num_protos);
geis(waste);

kS

6-10

rintf(* \n*);
d‘(,(num.prolos < 20) && (num_protos > 1))
ne =]
clse
printf{* \nYou need to do at least 1 and at most 20.\n");

Enter Users Until You're Donc sssxssessssesd

while (!finished){
done = 0;
quit = 0;
fssensnnex Prompt User for User Name #s»» ¢4

printf("\nEnter the person's username <8 letters>: *);
gets(u.name);
printf(*\n*);
while(!done){
printf(* \nThe name you entered was : $s\n®,u.name);
printf(*You can either re-enter a name or press return to continue. \n*);

geis(nuname);
1f(nu.name[0]-=='\0)
done =
else { «)

_name,nu.name);
:tu':q’.nmne“[01="n\0';

}
leassaxenxes grab training images of the user 4

file_ptr{O]=ftell(flist);
for (i=1; i< num_protos; 1++){
NUML_Irain = num._train++
spnntf(ﬁ)cname, ts%d',u.name.l),
seg-grab(filename);
pnntf(ﬁlenam. tstdts* u.name,i," .gra®);
fprintf(flist, " $s\n ", filename);

1]=feli(flist
ﬂlst,(ﬁle.ptt[O] file_puf1]).1);

lexxsuxase Preprocess the training images s+x+ud

for (i=1; i <num_protos; i++){
fscanf(ﬂlst. $s\n" filename);
center(SM_WIDTH, correlate ref" filename);
Is spnmf(ﬁkname,"%s ", u_name,i);
d:s play(SM_WIDTH, filename,num_protos);
filename, "% Bd%s ,u.name,i, gra”)

lgwmd(SM _WIDTHfilename);
dmpnnyt(!(ﬁkuam "%z%d ".u_name,i);
spgnd(ﬁknmne, "5 Bd%s ", u_name, i, gra")'d

cen ter(SM. WID’IH *wind.ref*, ﬁlcname).

H

ﬁlename, tstdss® u.name.n.l gr)a %

pnntf(\nDo Another User? <y or n>: \n*),
gets(another);
while (!quity{
if ((another{0] == 'n*) || (another{0] == *N*)){
finished = |;
quit = 1;

}
clse if ((mothed0]= y*) || (another{0] = * Y*)){
ﬁmshed

quit=1;
}

6-11

else {
printf("\n\nHit y if you want to enter another user.\nHit n if you're done entering users.

[ts(another);
gerintf('\n'));

}
}
}
'fprintf(fpamn,' td\n%d\ntd\ntd\n",SM_WIDTH,num_coefs,num_train, num_protos);

close(flist);
fclose(fparam);

lesxxxsxsnxxx Make Cocflicients for All Training Images s+ sssxsx§

if ((flist = fopen(*train_list®, "r")) == NULL)
printf(*\nCollect can't open the training list.\n*®);

fweights = fopen(*train_coefs",*w®);

for (i=1; i<num_train; i++){
fscanf(flist,” ¥s\n" filename);
sprintf(command,* $s%sts*,*mv * filename, * training_images");
de transform(SM.WIDTH, filename, fweights ,num._coefs);
system{command);

Iclose(ﬂist);

fclose(fweights);

systen{°rm *.rle");

system("rm *.rec");

system("rm *.red"),

printf(* \nTRAINING IS COMPLETE\n"),
} /#END TRAIN#

6.5 train.c

train.c

This program is used to train the KLT\ KNN system.

The grab routine is called first to collect the training images. Afier
all images of a particular user have been collected, each of the images
are preprocessed (centered and gaussian windowed).

The preprocessed images are then used by ki transform to

create an average face and a user determined number of eigen faces.
The coeflicients module is then called to extract the ki coefficients
from the training images. These coefficients, which are the end result
of the training process are stored in train.coefs. All training images
are stored in a folder called training_images for possible use in
retraining the system at a later time.

Written by: Ken Runyon
Date: 21Jul92-31 Aug 92

LR B NE AR BE BN BE NE BE R R AR 2R B N JR IR K -

Y

#include <stdio.h>
#include <string.h>
#include "vfc_lib.h"
#include *globals.h*

int i,
finished,
done,

quit,
aum_protos,
usercoefs,
num.coefs,
num.train,

6-12

file_ptr{2];

FILE s«fparam,
»flist,

=fweights;

char command[80],
u.name(8],
nu.name(8),
filename{20),
waste[2],
another{4];
main()

{

lexsnniaax Make a Training Folder to Hold the Protolypes s+« %x &4
system("mkdir training_images®);
/ Open the Training List File 4

if (flist=fopen(*train_list*,*w+*))==NULL)
printf(*I can‘t open the train list.\n®);

/ Open the Training Parameters File *
fparam=fopen(*train_params*,"w*"),
fexxsexxns Prompt User for Number of Prototypes sssxxf

done = 0;
while (‘done){

A

printf(*\nEnter the number of prototypes to be used for each user <1-20>:

scanf(* ¥d" ,&num_protos

setS(wasw). :

printf(*\n*);

mum.pro(os < 20) && (num_protos > 1))

else
printf(* \nYou need to do at least 1 and at most 20.\n");

Enter Users Until You're Done sessxnsssesnnd
while (!finished){

done = 0;

quit=0;

lesssxnsen Prompt User for User Name sssexnd

printf(" \nEnter the person's username <8 letters>: *);
gets(u_name);
printf(*\n*);
while(!done){
printf(* \nThe name you entered was : $s\n",u_name);
printf(*You can either re-enter a name or press return to continue.\n");
gets(nu_name);
if (nu_name[0] == *\0"’)
done

else{

strcpy(u_name,nu.name);
nu.name[0] = *\0’;

}
[sxeaueresss grab training images of the user

file_ptr{O}=ftell(flist);
for (i=1; i< num.protos; i++){
pum.train =

spnntf(ﬁlena:m %std'.u.namc,n).
se filename);

*.

printf(filename, * tsides® ,Juname.i,”.gra®);
fpnmf(ﬂnst,'%s\n Lfilename);

6-13

)

file 1]=ftell(flist
D e tei0—fle_per{ 1,1

Isxxxxnnwx Preprocess the training images s#»s a4

for (i=1; i<num._protos; i++){
fscanf(flist," $s\n" filename);
center(SM._WIDTH,*correlate.ref" filename);
gwind(SM_WIDTH filename);
center(SM_WIDTH, *wind.ref" filename);
&nntf(ﬁlenalm '%s%d'.u.name.l).

lay(SM_WIDTH.filename,num_protos);

sprinti(filename, " $s¥d%s*,u_name,," .gra*);

printf(* \nDo Another User? <y or n>: *);

gets(another

while ('qmt){

if ((another{0] == 'n*) || (another{0] == *N*)){
finished = 1;

quit = 1;

else if ((another{0] == 'y"’) || (another{0) == * Y*)){
ﬁngsheil =(0;
quit=1;

}
else {

printf("\n\nHit y if you want to enter another user.\nHit n if you're done entering users.

gets(another);
printf(* \n*);

}
}
}nuuuun Decide how many eigenfaces you necd sxxxxxxsxsd
=0;

done
while (!done){
printf(* \nEnter the number eigenfaces you want to train on <%d>: °,
num_train‘mm.protos/3);
scanf("$d° .&uscr.coefs),
gets(waste);
pnntf(\n®);
if ((user_coefs > 0) && (user_coefs < num_train)){
gm.coefs = user.coefs;
ne =

else if (user.coefs == 13){
3um.co;.fs = num_train/mim_protos/3;
one =

€l
printf(* \nYou need to do at least 1 and at most %d\n°,num.train);

fgg:g((f?;r?m. $d\ntd\n%d\n%d\n* ,SM.WIDTH,num.coefs,num.train, num_protos);
fclose(fparam);

ki transform(*train_list*, SM.WIDTH, num.train);

lessnsnensnss Make Coeflicients for All Training Images »exesnnsni

if (flist = fopen("train_list", "r*)) == NULL)
printf(*\nCollect can't open the training list.\n");
fweights = fopen(®*train_coefs®,*w*);

for (i=1; i<num.train; i++){

fscanf(flist, $s\n" filename);

sprintf(command,* $s%s%s°,"mv ° filename, * training_images*);
coefficients(SM_WIDTH, num_coefs, filename, fweights);

6-14

system(command);

close(flist);

fclose(fweights);

system("rm *.rle*);

system("rm *.rec");

system(' * . red*);

printf(* \nTRAINING 1S COMPLETE\n");
} /#END TRAIN#¥

6.6 retrain.c

retrain.¢

This program trains a face recognition system using the pre-existing
images stored in the directory of execuu{:l

No grabs, no tepmocss 51 , Just
makes ei| icients. Training paramaters are selected

by the vser pmmpts It has to be provided a train_list. This program

is used when you want to keep the same training set but change some
training parameter such as number of coefficients.

Written by: Ken Runyon
Printed: 10 Sep 92
Date: 18 Aug 92

L R 2K K I 2K 3N 2K K K R IR K R R -

#include <stdio.h>
#include <string.h>

FILE =fparam,
=flist,
sfweights;

char commaad(80],
filename[20),
waste[2];

extern kltransform();

extern void coefficients();

main()

{

/ Open the Training List File ¥

if (flist=fopen("train_list*®,"a*)==NULL) {
pnn(lf(§ can’t open the train list.\n*);
exit(—1);

/= Open the Training Parameters File

if((fparam = fopen(*train_params®,*r*))== NULLY{
pnn(tf(; can't open the parameter file.");
exit(—1);

.

Open the trainlist

if((flist = fopen(*train_list®,"r*))== NULL)}
printf(*I can't open the training list.®);

6-15

exit(—1);

lexxxnennss Count the number of training images »+xsxx4

while (!feof(flist)){
fscanf(flist, * $s\n" filename);
numtrain++;

printf(* \nRetraining on %d faces:\n",numtrain);
fclose(flist);
/sssax22xess Decide how many eigenfaces you nced stsx»snsxxxni

while (done){
printf(* \nEnter the number eigenfaces you want to train on <%d>: *,num.train/3);
scanf(* $d° ,&user_coefs);
gets(waste);
printf(*\n*");
if ((user—coefs > 0) && (user_coefs < num.train)){
gum.cmlefs = yser coefs;
one = 1;

else if (user_coefs == 13){
m_train/3;

num.coefs = nu
done=1;

e
printf(* You need to do at least 1 and at most %d\n*",num.train);

'fpﬁntf(fpamm,' %¥d\n%d\n%d\n",width,num_coefs,num_train);

close(f])

system("cp training_images/* .°*);

/«kl_transform("train_list", width, num_train); ¥

Fersnxnnnwnnes Make Coefficients for All Training Images ###xxx4xed
if ((flist = fopen(*train_list*, *r*))== NULL) {

printf("I can't open the training list.\n®);
exit(—1);

system("rm train_coefs");
fweights = fopen(*train_coefs*®, "w");

for (i=1; i<num_train; i++){
fscanf(flist,* $s\n* filename);
sprintf(command, " ss%s*,"mv " filecname, * training_images®),
coeflicients(width, num_coefs, filename, fweights);
system{command);

}closc(ﬂist);
} /«END TRAIN¥

6.7 add_usr.c

add.usr.c

This program is used (0 add a user to the set of training faces.
Images of the new user are taken and preprocessed. new images
are added (o the train_list. A new average face and a new set of cigen-
faces are then created using the new images and the pre-existing images
stored in the training_images folder.

Coeflicients are then extracted for all of the images and a new
train_coefs file is written.

L 2R 2K 3R 3R 2K 2R IR B I IR bl

Written by: Ken Runyon

6-16

Date: 21Jul 92 - 25 Aug 92

* K #*

*

e 20 300 2 2 3 e o o 2 e e o 2 K ok e o e s ol ok e ok ol ko ok K ok *k *
#include <stdio.h>

#include <string.h>

int i,
finished,
done=1,
quit=0,
month,
day,

width,
num_protos,
user.coefs,
num_coefs,
numrain,
file_ptr{2];

FILE «fparam,
*flist,
«=fweights;

char command(80],
u_name(8],
nu_name(8},
filename[20),
waste[2],
another{4);

extern void seg.grab();
extern void display();
extern void center();
extern void gwind();
extern void coefficients();

main()

[exxxxnsxxxkexsks Open the Training List File #xxxkxxxsxxtrnns

if ((flist=fopen(*train_list*,“a"))==NULL) {
printf("I can‘t open the train list.\n");
exit(—1);

lesxsrarxxxexxsxs Open the Training Paramelters File #x# a2 xxxxn ks

if((fparam = fopen("train_params*,"r®))== NULL){
pri_n(tf(‘; % can't open the parameter file.");
exit(—1);

}scanf(gparam, *%d",&width);
fscanf(fparam *%d" ,&num_coefs);
fscanf(fparam,® ¥d* ,&num.train);
fscanf(fparam,” $d* ,&aum_protos).
fclose(fparam);

/xxxxxsnxnnsssxnnxx Enter Users Until You're Done sxsxxxsxsxxesnsf
while ('finished){
done =0;
quit=0;
i«xxxsxexs Prompt User for User Name s+ xxx x4
prinif("Enter the person's username <8 letters>: *);
gets(u_name);
printf("\n");
while(done == 0){
printf(* The name you entered was : %s\n",u.name);

printf(*You can either re-enter a name or press return to continue.\n®);
gets(nu_name);

6-17

if (nu_.name{0) == ‘' \0’)
done = 1;

else {
strcpy(u.name,nu_name);
nu_namef0} = *\0";

}

Ieesnenexnsx grab training images of the user ks xxss st xkkrnsf

file_ptr{0)=ftell{Rist);

for (i=1; i< num.protos; i++){
num.train = num train++;
sprintf(filename, * ¥s%d" ,u_name,i);
seg_grab(filename);,
sprintf(filename, " $s%d¥s " ,u_name,i,” .gra*);
fprintf(flist, * $s\n"*,filename);

Ale.ﬁu[1]=ftell(flist);
fseek(flist,(file_ptr{0]—fileptr[1]),1);

lexxx+xxx% Preprocess the training images »*xxxx$

for (i=1; i<num_protos; i++){
fscanf(flist, " ¥s\n" filename);
center(width,"*correlate.ref " filename),

gwind(width,filename);

center(width,*wind. ref" filename);
sprintf(filename, * $s%d* ,u_name,i).
display(width,filename,num_protos);
sprinti(filename, * $s%d%s " ,u_name.i,” .gra"),

gcek(flist,(file_ptr{1)—file_ptr{0]),1);
printf(*\nDo Another User? <y or n>: \n®),
gets(another),
while (quit == 0){
if ((another{0) == ‘n’) || (another{0]) == ‘N’)){
finished = 1;
qQuit=1;

else if ((another[0] == 'y) || (another[0]) == ' Y’))}{
finished = 0,
qQuit=1;

else {
printf("\n\nHit y if you want to enter another user.\nHit n if you're done entering users.
'ge}s(anolher);
printf(*\n*);

}
}
)closc(ﬂist);
Ixxsxxsassxxx Decide how many eigenfaces you need sxsssssnnssd

while (done == 1)
printf("Enter the number eigenfaces you want to train on <%¥d>: *,num.rain/3);
scanf(" $d" ,&user_coefs);
gets(waste);
primtf(“\n*),
if ((user.coefs > 0) && (user.coefs < num_train)){
num_coefs = user_coefs;
done =0,

else if (usercoefs == 13){
num_coefs = num.rain/3;
done = 0;

¢
printf(*You need to do at least 1 and at most $d\n°",numdrain);

6-18

}

if((fparam = fopen(*train_params*,*w"))== NULL){
pri_n(tf('li)[can't open the parameter file."),
exit(—1);

fprintf(fparam, * $d\n%d\n%d\n¥d\n*, ,width,num_coefs,num_train,num_protos),
fclose(fparam);

system(*cp training_images/*.gra .*');

kitransform(*train_list ", width, num1rain);

Ixxxnexrrnkxsx Make Coefficients for All Training Images *+xxxxx%x¥

if ((flist = fopen(*train_list®, *r*))==NULL) {
printf(*I can't open the training list.\n*");
exil(—1);

fweights = fopen("train_coefs*,"w");

for (i=1; i<num_train; i++){
fscanf(flist," ¥s\n" filename);
sprintf(command, " $s%s%s*,"mv " filename, * training_images*);
coefficients(width, num_coefs, filename, fweights);
system(command);

close(flist);
fclose(fweights);
system(*rm *.rle");
system(*rm *.red");
system(*rm *.rec");
} /+END TRAINY

6.8 verify.c

/*ttt*tt##***tt#*t*tttttt##t#t#t‘#**#t#t**‘tt#‘**t#t#t**t
Name: verify.c

*

*

*

» Description: This program performs face recognition. The program
» grabs an image of the person sitting in front of the

* camera, processes that image, extracts the KLT

* coefficients and finds the closest

» maich from the faces in the training set using the

* K-nearest neighbor.

*
*
x

Wriiten by: Kenneth Runyon

*

Date: 8July 92 - 31 Aug 92

*

*
tt##‘*t‘#*#t##t####ttt‘#*#t#tt****##t##t###ttttt##t##*###‘
#include <stdio.h>

int dimension,

num_coefs,

num_train_faces,

done,

num.protos;

FILE =fparam,
*fweights;

char answer{2],waste[2];

main()

lexxees Grab a test image (o align the user s+x»»4

6-19

while('done) {
rab(64);

system(*bin2gray user.red test.gra*),
system("rm user.red");
display(64, "test",1),
primtf("Is your face comgletely in the picture? <y or n> :*),
while(((answer{[0}# 'y ') && (answer{0)#£ ' Y*)) && ((answer[0)}#'n’) &&
(answer{0)# *N*))){

gets(answer),

printf("\n*");

if (answer{0] == 'y’ || answer[0} == ' Y’ }{

done=1;

else if(answer{0) == 'n’ || answer{0] == *N*){
printf(*answer = %c\n",answer[0]);
done = 0;

else {
printf
(*Enter 'y’ iff your whole face is in the picture.\n");
print
(*Enter 'n' if your whole face is not in the picture.\n\n");

}
answer{0] = 0;
system(*rm test.gra®);

J T T R PR p e

* read the parameters from train_params file
o 2 00 200 0 200 3 200 3 e ol 2o o ok o ook ok ok ok ok ko ko L2 2

if((fparam = fopen("train_params*,"r"))== NULL){
pri_n(tf(H can't open the parameter file.*);
exitl(—1);

}scanf(fparam, " $d°,&dimension);
fscanf({param *%d" ,&num_coefs);
fscanf(fparam,* $d*,&num.irain_faces);
fscanf(fparam, " $d° ,&num_protos);
fclose(fparam);

Ixxxxx grab a test image s*xx»#
seg_grab(*user*");

/x#x%xx preprocess the test image sxxxxd
center(dimension,* correlate.ref”,"user.gra*);
gwind(dimension,"user .gra*);
center(dimension,*wind.ref","user.gra");
display(dimension, "user*,1),

lexxxxx pull the ki coefficients and store them s»*»x+
fweights = fopen("test_coefs*,*w*);
coefficients(dimension, num_coefs, "user . gra* fweights);
fclose(fweights);

Isxx«#x find the best matching training face »»s»»+4

k.nearest(num_protos,num_coefs,num_train_faces);
systzm(“rm test_coefs"),

Ixxssns remove trash files xxxsxd
system(*rm *.rle"),
system("rm *.red");
system(*rm *.rec*),

} /2= end verify.c »»4

6-20

6.9 verify_net.c

/*#**#*******#**t******t**
Name: verify_net.c

*

x

*

* Description: This program performs face recognition. The program
* grabs an image of the person sitting in front of the

* camera, processes that image, extracts the KLT

* coefficients and finds the closest

* match from the faces in the training set.
*

*

*

*

t 3

*

Written by: Kenneth Runyon
Date: 8 July 92 - 31 Aug 92

#include <stdio.h>

#define NUM_LAYRS 2

#define WT.SED 1918940490
#define PART.SED 1191645590
#define RNDMSED 123456789
#define MAXITS 3000

#define QUTINT 100
#define ETA_IN 0.15

#define ETA.OUT 0.3

#idefine ETA_1 2 0.0

#define ALPHA 05

#idefine BAT.SZ 1

#idefine TRAINPCT 1.0
#define NORM 1

*%.

int dimension,
num.coefs,
num.train_faces,
done,
num_class,
aum_protos;

FILE sfparam,
=fweights,
=fset,

*ftable;

char wt.file[10],
dat_file[10],
hid_nodes,
hid_nodes2,
answer{2],
waste[2);

extern void grab();

extern void ver.grab();
extern void display();

extern void center();

extern void gwind();

extern void net_coefficients();
extern void k_nearest();

main()
=xxx+% Grab a (est image to align the user »xxxx4

while('done) {
ra)
system("bin2gray user.red test.gra"),
system("rm user.red"),
display(64, *test",l);
printf(*Is your face cmletely in the picture? <y or n> :*);
while(((answer{0)£ 'y ') (answer[0]# ' Y’)) && ((answer{0}#'n’) &&
(answer{0]# ' N’)){
gets(answer);
printf(*\n*);
if (answer{0] == 'y’ || answer{0] == ' Y' }{

6-21

done=1;

else if(answer[0] == 'n’ || answer{0] == ‘N’){
printf(*answer = %c\n",answer{0});
done = 0;

else {
printf) .
(“Enter 'y' if your whole face is in the picture.\n®);

print .)
(*Enter ‘n*' if your whole face is not in the picture.\n\n");

ans}wer[0] =0;

system(*rm test.gra®);

A
4

* read the parameters from train_params file

L2 A L2 2L]

if((fparam = fopen(*train_params*,*r"))== NULL){
pli.n(tf(g can't open the parameter file.*);
exit(—1);

scanf(t"param, *%d ", &dimension);
fscanf(fparam *$d",&num_cocfs);

fscanf(fparam * %d*,&num_train_faces);

fscanf(fparam, * $d* ,&num_protos);

fscanf(fparam, * ¥d* ,&num_class);

fclose(fparam);

Ixxxexrnrxrxs Create the setup file for the neural network s**xxxxxxf

strepy(wi file,*k1t .wts*);
strepy(dat-file,"k1t .dat *);
hid-nodes = 2 * num_coefs;
hid.nodes2 = 0;

fset = fopen("setup.mlp*,*w"),
fprintf

h sgxigf‘is\)n%d\ n$d\n¥d\nis -store weights\ntd\n*",NUM.LAYRS,WT_SED,PART_SED,RNDM_SED,wt file,
gptjntf(fset." %d %d %d %d\n",num_coefs,hid.nodes,hid_nodes2,num_class);

Jmntf(fset, *%s -data\n¥d\n%f\n¥f\n¥f\nsf\nsd\ntf\nsd\n",

falt.ﬁlz:thlgT.IN'l‘.E'I'A_IN ,ETA.OUTETA.1 2,ALPHA BAT _SZ TRAIN_PCT,NORM);,

close(fset);

Iexxxix grab a test image *xxxx#
ver.grab(g;

J«sxxxx preprocess the test image #xsxx#

center(dimension,"correlate.ref","user.gra*);
gwind(dimension,"user.gra");
center(dimension,"wind.ref","user.gra");
display(dimension, “user~=,1);

Jexx%x% create the data file and store the ki coefficients sxxx»+
ftable=fopen(*waste*,"w*");

fweights = fopen("k1t.dat",*w");

fprintf(fweights,* $d\n%d\n" ,num_coefs,num_class);

net_coefficients(dimension, num_coefs,"user .gra®, fweights, ftable, num_class);
fclose(fweights);

l#*+x=x find the best matching training face **x»x+4

system("mlp_tst*);

[sxxxxs remove trash files ¥ xxxxx4

Issystem("rm test_coefs");¥
system("rm *.rle*);
system(“rm *.red"),
system("rm *.rec");
system(“rm waste"*);

} /#%= end verify.c #+4

6-22

6.10 verify_dct.c

Jewwdon Aok Aok
Name: verify_dct.c

*

*

*

* Description: This program performs face recognition. The program
* grabs an image of the person sitting in front of the

* camera, processes that image, extracts the DCT

* coeflicients and finds the closest

* match from the faces in the training set.
*

*

*

*

*

*

*

Written by: Kenneth Runyon

Date: Sep 92

To be done: If(pers is user) then login else logout
*
#include <stdio.h>
#define SQ(A) (A)x(A)

int dimension,
coef_rows,
num.coefs,
num.train_faces,
done,
AUM_Protos;

FILE sfparam,
*fweights;

char answer[2],waste[2];

extern void new_grab();
extern void display();
extern void center();
extern void gwind();
extern void dc.transform();
extern void vote();

main()

[+x%x%x Grab an image to align the user *»*x*+

while(!done) {
grab(64);
system("bin2gray user.red test.gra");
system("rm user.red*);
display(64, *test",1);
printf("Is your face completely in the picture? <y or n> :*);
while(((answer[0]# 'y *) && (answer[0)# ' Y’)) && ((answer{0]# 'n’) &&
(answer{0)# ' N’)){
gets(answer);
printf(*\n*);
if (answer{0] == ‘y’ || answer{0] == ‘' Y*){
done = 1;

else if(answer{0] == 'n’ || answer[0] == 'N'){
printf(*answer = $c\n",answer{0]);
done = 0;

else {
printf(*Enter 'y' if your whole face is in the picture.\n*);
printf("Enter 'n' if your whole face is not in the picture.\n\n");

} /=end of else¥
/=end of while (answer) ¥
answer[0) = 0;
/send of while(done)¥

system("rm test.gra");

6-23

T P T S S TR T e

» read the parameters from train_params file
A AR R ARk R R R R ROk Rk kR Rk ko

if((fparam = fopen(*train_params*,*r*))== NULL){
pri_n(lf('ﬁ can't open the parameter file.");
exit(—1);

scanf(fparam, * $d" ,&dimension);

fscanf(fparam,” $d* ,&coef_rows);

num.coefs = SQ(coef.rows+1);
fscanf(fparam, * $d* ,&num_train_faces);
fscanf(fparam, * $d* ,&num_protos);

fclose(fparam);
Insxxxx Grab the test image »**s»#

ver.grab();
/xwxaxx Preprocess the test image »xx»x4
center(dimension,"correlate.ref”,"user.gra*);
gwind(dimension,"user .gra*);
center(dimension,"wind.ref","user.gra");
display(dimension, "user”,1);
Ixxxxxx Write out the DCT coefficients #++x+4
fweights = fopen(*test_coefs*,"w");
dc_transform(dimension,* user . gra* fweights,coef_rows);
fclose(fweights);
I=xxx%x Find the closest matching training face »»»»x+4
k_nearest(num_protos,num.coefs,num_train_faces);
Ixxxx%x Remove the trash files xsxxx#
system(*rm test_coefs");
system("rm *.rle");

system("rm *.red");

system(“rm *.rec");

}/wx% end verify_dct.c »»+

6.11 kitc

T e P T T T T) ERRERRERERE

NAME: kit.c
DATE: 24 June 1991

DESCRIPTION: This program calculates the basis set of eigenfaces for
a given training set as well as the average face.

Modified by: Ken Runyon
Printed: 10 Sep 92
Date: 30Jul 92

Changes: Modularized the program to a procedure. Modified the
interface to pass training paramelters.

tt#tt*“*t#ttt####tl**#tt‘tttt‘#‘#########t#t‘##*t#t*tttt###t*t*‘###4
#include <stdio.h>

#include <math.h>

#include <string.h>

#define SQ(A) (A=A)

char train_list{};

6-24

int dimension,
num.train;

void kl_transform(train_list, dimension, num_train)

FILE =train, *facein, *fout;

FILE =face_avg, *tempfile, #fevex, «feval;

int ij, N, k, M, nrot, atoi(),

float »*matrix(), *xvector(), *xA, ==A _trans, **u, *xL, xxv, »average_face;
float »d, temp, *ma‘g;

void free_vector(), free_matrix(), eigsrt(), jacobi(), mat_col.mag();

char filename[81], h,1;

*

lexnrnxnnxenensxeex Set Up Files #xxxerxr

hrimf('Creating Eigenfaces.\n\n");
= dimension * dimension;
if ((train = fopen(train_list, *r*)) == NULL)

printf(*I can't open the training list*");
exit(—~1);

M = num._train;

l+x%xxx dynamically allocate memory ssxxx+¥
A _trans = matrix(1,M,1,N);

A = matrix(1,N,1,M);

average.face = vector(1,N);

L = matrix(1,M,1,M);

d = vector(1,M);

v = matrix(1,M,1,M);

mag = vector(1, M);

lexwxxx initalize matrix and vectors *xxxxf
for(j=1j<Mij++)
for(i=1;i<N;i++)
A rans|jl{il=Alil(jl=average_face[i]=0.0;
printf(* The files being trained on are :\n\n");
for(k=1; k<M; k++){

fscanf(train, *$s\n*, filename),
printf(*\t\t%s\n", filename);

facein = fopen(filename, "r*);
for(j=1;j <Nj++){
fscanf(facein,* $£\n" &A[j]k]);

fclose(facein);

/xxxxxx Normalizing Data by dividing by 255 #x*»»+4

for(i=1j<Mij++)
for(i=1;i<N;i++)
) AlIGEALNDS:

[exxnnexxnxxCalculate Average Face sxxsrstnspntsnsrxrsxes

Ixprintf("!!! CALCULATE AVERAGE FACE\n "); 4
face_avg=fopen("avg_face.dat","w");
for(i=1;i<N;i++}{

temp=0.0;

6-25

for(j=1;j<M;ij++)

temp=lemi»A[1]L|]
averag J=temp/M;
fprintf(face_avg,* %f\n , average_facel[i));

}close(face.avg);

Jxwxxns printf("!!! SUBTRACTING OFF AVERAGE FACE\n"); »++»»4

for(i=1j <Mij++)
for(i=1;i<N;i++){
A[lih]‘A[n]h]—average.faceh]

lexxxxx CREATING A TRANSPOSE *x%x*x+¥
I« printf("1!! CREATING TRANSPOSE MATIX \n");¥

for(j=1j<M;j++)
for(i=1 ,|<N.1++)ﬂ
A trans[j](i]=Alil(j);

"o

[sxxxxx fout=fopen("l.dat","w")exxx x4
Ix primtf("!!! Multiplying A trans and A to get L:\n"); ¥
for(i=1;i<M;i++)
for(j:l;j<M;j++) {
mp=0.0;
fot(k-l,k<N,k+ +){
temp=temp+A trans[il[k]*A[k1[j};

Ixsxexxfprintf(fout,"%f\n", temp);x x4+
L{il(jl=temp;
Tesxwsx printf("!!! Writing Output \n"); »*xxxx+

}
lexxxxx ("!1! FREE MATRIX A_TRANS \n"); sxxxxd

free_matrix(A trans, 1, M, 1, N);
Ixprintf("!!! doing jacobian of L \n"); ¥
jacobi(LM.d,v, &nrot);

eigsrt(d,v,M);

Jook ok ek
xfeval=fopen("“eigen_val”,"w");
sfor(j=1<Mj++) {

* f[printf(feval,"%f\n", d[j]);

teb
=fclose(feval);

(YT III I T

Isxxxsxxexs printf("!!! Writing eigenvectors \n");

»
8fevex=fopen(“eigen_vec”,"w");
8for(i=1;i< M;i++){

s for=Tj<Mij++) {

= [printf(fevex,"%\n", v[jIli]);
* }

E 3

*)close([evcx)

sukarrnnf

6-26

Jexxnss printf("!!! Initializing Eigenface Matrix \n"); #x+++4
= matrix(1,N,1,M);
for(k—l kSM; k++)
fOr(j—lJ(N _|++)
uljlikj=0.0
Feprintf("!!! Calcualting eigenface \n"); ¥

for(k=1;k<M; k++){
for(l- 1;i<M; 1++){

Ti<
)][k]-V[lf[kl*A[l][l]ﬂhl[kL

}

Ixxx%+x finding magnitude of eigenface *»x*x4

Ixprintf("!!! Opemng train.out file for Eigenfaces \n"); ¥
tempﬁle fopen("train.out", "w*");

h=48;

1=48;

strepy(filename, "eigenface*),
for(k=1; k<M; k++){

if(1 # 57) l++;

fprintf(tempfile, " $s*, filename);
fprintf(tempfile,* $c%c",h,1);
fprintf(tempfile,” $s\n=," .dat");

f}close(tempﬁle);

Ixprintf("!!! Writing eigenface \n");¥
tempfile = fopen(*train.out*, *r"),
for(k=1; k<M; k++){
fscanf(tempfile, "$s\n", filename);
facein = fopen(filename, “w*);

Iexxxxx printf("%s\n", filename); sxxxxd
lexnxsx fprintfifacein, "%\ n", mag[k]); sx*+x4

for(j=1;j<Nj++){
fprintf(facein, " $g\n", u(jl(k]);
)
fclose(facein),
frlose(tempfile);

Iexsnanprintf("!!! FREEING A MATRIX \n");xsxx4
free_matrix(A,1,N,1,.M);

6-27

free_matrix(u,1,N,1,M);

void mat_col.mag(u, N, M, mag)
float »*u, mag{];

int N, M

{ﬂoal b;

intk, j;

double sqrt ();

forik=1; k<M; k++) {
b=0);
for(j=1; f<N jr+)

b=u[jI(K] * u[jllk] + b;
mag[k] = sqri((double) b);

6.12 seg._grab.c

I«

* File: seg_grab.c

*= Created: July 1992

* By: Kevin Gay

*

* Purpose: Uses the VideoPix Tool to grab segmented images.
*

* Assumes:

*

* Modified: 12 Aug 92

*

* By: Ken Runyon

*

* Why: I changed the linked list of images to return only one good

image instead of returning every attempt. This grab is used for
training and recognition routines.

#include <stdio.h>
#include <sysftypes.h>
#include *vfc_lib.h"

#include *globals.h"

extern struct head_ptrs ~ *z_segment();
extern int z_store_image(),

void seg-grab(filename)
char filename[);

{

u.char =face, »ptr;
register int i;
struct head.ptrs xtemp_ptr, *face .ptrs;
char oka gain = 'y’
storeﬁlef30r]ycommand[80],
waste[2
int done:O
/=% will store image as a "red" file *»¥4
sprintf(storefile,* $s%s* filename," .red");
/x*x loop to detect motion and segment face *»4
while((tryagain == * Y")||(tryagain == 'y ')){
done = 0;
printf(*Please look at camera until you hear a beep.\n®"),
I==» assign segmented images to face.ptrs linked list #»¥

face_ptrs = (struct head_ptrs »)z_segment();

6-28

if(face_ptrs == NULL)
printf(*Trouble getting images\n");
else {
while(face_ptrs—next # 0) {
face ptrs = face_ptrs—next;

if(z_store_image(face_ptrs— head,storefile, SM_SIZE*<0)
fprintf(stderr,*Unable to write to file\n"),
sprintf(command,® $s¥s%s%s%s”,"bin2gray *.filename,
*.red *.filename,* .gra");
system(command);
display(32,filename,1);
printf("\nIs this picture okay? <y or n> *);
while(!done){
scanf(" ¥c",&okay);
gets(waste);
if(oka¥= ‘n’ || okay == 'N'}{
free(face_ptrs);
tryagain="y’;
done = 1;

else if(okay == 'y’ || okay == 'Y*){
free(face.ptrs);
sprintf(command, " $s%s%s*,"rm *.filename,"” .red");
system(command);
tryagain= ‘n’;
done =1,

else printf(*\nIs all of your head in the picture? <y or n>*);

}
}
} /% end of seg_grao¥

6.13 center.c

/*****#***t******
Name: center.c

Description: This program correlates the input image with a
reference image and shifts the input image so
that it overlays the reference image as much as
possible. is is the current way to make the KL
transform invariant to shift.

Written by: Pedro Suarez (at least that’s who I got it from)

Date: Summer 91

Modified by: Ken Runyon

Date: 15Jui 92

Maodification: Converted it forom stand alone ¢ to a module,

changed the output file to write back to the input,
pulledoum:scale():asaseperaleprocedure. e o o o e o o o o o 3 o o o oK o oo o o o 3K o ok o o o ok o o o o ok R ok ok ok o

LR 20 R B B R BE K BN CEE BE NE B NE R NC A B 3

#include <stdio.h>

#include <math.h>

#define SQR(a) (a)*(a)

#define loopi(A) for(i=0;i<(A);i++)
#define loopj(A) for(j=0<(A);j++)

void center(Row, refile, imagefile)
int Row;

char refile(],
imagefile{];

it x,y.ij,

6-29

Col = Row,
location[3);

float =»x1,
*X2,
*vector(),
**xmatrix(),

«ximagel,
»#image2;

FILE =fout,
=dat_filel,
*dat_file2,
=out.file;
void fourn();
void Correlate();
void max_find();
void Clate3();
void shift();
void rescale();
printf(*\nCentering %s\n",imagefile);
[erdnrkrsknerrrsxis Set Up Files #axkxsrmbsaskrrmkhssrnis
if ((dat_filel = fopen(refile, *r ")) == NULL)

printf(*I can't open the reference image");
exit(—1);

if ((dat_file2 = fopen(imagefile, *r*)) == NULL)
printf(*I can't open the input image®);
exit(—1);

/xsxxxxx allocate matrices for images sxxsx#¥

imagel = matrix(0, Row—1, 0, Col-1);
image2 = matrix(0, Row—1, 0, Col—1);

Jexxxxx read the reference face into the 1st matrix »#x*x+¥

for(y=0 _8'<Row y++)
for(x=0; x<Col; x++)
fscanf(dat.ﬁlel "$£\n" &imagelx]{y]); /«* (takes care of initialization) =+
fclose(datfilel),

fexxxxx read the input face into the 2nd matrix *x+4x+
for(y=0; y<Row; y++)

for(x-ny<Col X++)

fscanf(da(_ﬁle2 *$f\n",&image2([x]{y]);

fclose(dat_file2);
Ixxxx»x Open image file as output file xx+xx+
if ((out file = fopen(imagefile, *w*)) == NULL)
printf("I can't open the output file");
exit(—1);
I=xx22 allocate two vectors and initialize them =»xxx+4

x1 = vector(0,2«Row=Col—1);
x2 = vector(0,2+«Row=Col—1),

100?1(Row=Col){

2 t1]=x1[2n+ll= ,
x}2[2n]=x2[2n+l]= S

6-30

Jexxxx+ Put the images into every other space of the column vectors *x*xx#

loopi(Row) {
loopj(Col) (float) x1[2(i*Col+j)] = imagel[jlfil;
loopj(Col) (float) x2[2#(i»Col+))] = image2[)}{i);

Ixxx»»x Finds the peak correlation value »»x%*¥

Cate3(x1, x2, Row, Col, location);
if(location[0])>(Col/8)) location[0] = —(Col — location[0]);
if(location[1]>(Row/8)) location[1] = —(Row — location{1]);

shift(image2, Row, Col, location);
rescale(image2, Row, Col);

for(y = O;Oy < Row; y+4)

for (x = 0; x < Col; x++)

fprintf(out_file, *%4.0f\n *,image2[x][y]);

fclose(out_file);
free_matrix(imagel,0, Row—1, 0, Col-1);
free_matrix(image2,0, Row—1, 0, Col-1);
free_vector(x1,0,2xRow*Col—1);
frec_vector(x2,0,2*Row*Col—1);

*xf

exrxixrrrrasrxsrnsexxxxx THIS IS THE END OF CENTER.Cxsx#%x

/**#***ttt*t*#*##*t*##**********# kK
NAME: Cate3
DESCRIPTION: This routine determines the number of rows and columns that
tghe input image needs to be shifted by to be centered on the
reference

Rk RREK * xkk

*

void Cate3(x1, x2, Row, Col, location)
int Row, Col;

int location(};

l{loat x1(], x2{};

FILE =out_file;
int n[2),1i,j;
float =output,
temp,
=*xmatrix(),
=xmat_output,
=vector();

lexxxxx Allocate Memory for Arrays sxx+4

output = vector(0,2«Row=*Col—1);
mat.output = matrix(0, Row—1, 0, Col—1);

lexxxxx Assign Initial Array Values »x+»x4

n[0]) = Col;
n{1} = Row;

Correlate(x1, x2, output, n, Row, Col);
I=xx%xx Store The Magnitude Results #xx%%¥
loopi(Row)
loopj(Col) {
temp = scz’rt((double)SQR(ou(put[2*(itCol+j)])
+(double)SQR(output[2#(ixCol+})+11));

mat_output{jl{i} = (float) temp;
max_find(mat_output, Row, Col, location);
free_vector(output,0,2«Row#*Col—1);
free.matrix(mat_output,0, Row—1, 0, Col—1);

l}nuu This is the end of Clate3 »#xx=4

6-31

/#tltt‘tt#t###**t**#*#*#*t*#*#####**#t#***#*##**#*#t***#tt&#ttt#*#**##tt#t#
NAME: Correlate
DESCRIPTION: This routine shifis the input image over the reference and
calculates a corelation value for each location
##*##‘t****#‘**tt#tt##*t##t#‘t###t*#t‘#t#*‘t##“t##tt*#t*ttt##tt*t*tt*tt#

void Correlate(inputl, input2, output, n, Row, Col)
float inputlf],
input2[),
output[];
int n[},
Row,
Col;
it i
float =templ,
*temp2;

temp] = vector(0,2*Row=Col—1);
temp2 = vector(0,2«Row=*Col~1);

loopi(?.:Row:uCol)i
templ[i] = inputl{i};

temp2[i] = input2{i}.
Iexxxxx Take Fourier Transform of Input Functions #x%x+4

fourn(templ—~1, n~1, 2, 1);
fourn(temp2—1,n-1,2, 1);

Ixxxxxx Conjugate One of The Fourier Transforms »sxxx4

loopi(Row=*Col)
temp2[2#i+1] = —temp2{2+i+1];

fexx2x% Multiply Fourier Transforms Together x+x%#
loopi(Row=Col){
output[2=i] = temp1{2*i]*temp2[2#i] — temp1[2+i+]])xtemp2{2«i+1]; /= Real ¥
output[2xi+1] = temp1[2«i)stemp2[2+i+1] + temp2[2+i}«templ[2*i+1]; /« Imaginary
/=sxxxx Take Inverse Transformn to obtain Correlation #x*xx#
fourn(output—1, n—1, 2, —-1);
Ix+sx22 Rescale to get proper magnitude **# 4

loopi(2#«Row=Col)
output{i) /=Row=Col;

[exxexns R RREER * RRERERRE
The result of the correlation is that thefirst element of the output

matrix is for zero shift, the next element for shift one to the right and

soon. This puts results into a format which humans can understand.
EREEERERERREEERREREKE R R R AR KRR KR EEEERERERERKRKERE * "I“

/=+ Free up the memory when finished =¥

free_vector(temp1,0,2«Row*Col—-1);
free_vector(temp2,0,2#Row=+Col—1);

)‘ttt#ttt#ttt##tt**tt End of Correlate Routine »+» % ¢
[SERRARRRRRARRREARRRERR R RS AR KR REERRRE

NAME: max_find . .

DESCRIPTION: This routine finds the max value in a vector
ARRRERRRERRRRRRE PP an . P TP T PO PP

void max_find(mat.output, row, col, location)
float =+mat_output;

int row,
col,

6-32

location[};

int i j,
count,
tempdi,
temp_j;

float max;

/=xwxxx Check for the max and min value in the data =»xx»+4

max = mat.output[0}{0];
count=0;

for(j=0; j<row; j++)
for(i=0; i<col; i++){
if(mat_output[i](j]>max) {
max = mat_output{i}{jl;
temp = i; tempj = §j;

count++,;

1« printf("\ n1st_shifi=%d\ n",temp_i);

printf("\ n2nd_shift=%d\ n ”,tem{).j):nl]
location[Q]=temp.i; location[l]}=temp.j;
if((location[0]>col/8)]|(location[0] <(0 — coV/8))) location[0}=0;
if((location[11> row/8)| |(location[1]<(0 — row/8))) location[1]=0;

/= ok K
NAME: shift
DESCRIPTION: This routine takes a image shifts

2 e e o ok o e o ke e of et ool e s s ofeof e e ale e ke e R o o oK K o ok ook ok ek ko e kok ok ok *k

*k

ok

void shift(image, Row, Col, location)

float *=*image;
int Row, Col;
int location(};

int *«temp_mage,
LX,y,
nk,
new.row,
new.col,
xshift,
yshift,
abs();
float =+matrix(),
=ashifted_image;

xshift = location[0];
yshift = location(1];
I printf("\ nxshift = %d\n",xshift);
printf{"\nyshift = %d\n",yshift);¥

new_row= (int) Row+ 2 * abs(yshift);
new.col=(int) Col+ 2 » abs(xshift);

shifted_image = matrix(—abs(xshift), new.col, —abs(yshift), new_row),
Ie=x initialize matrix =x+4
for(y= — abs(yshift); y<new_row; y++)
for(x= — abs(xshift); x< new_col; x++)
shifted image{x](y}=127.0;
for(y=0; y<Row; y++)

for(x=0; x<Col; x++)
shifted_image[x+xshift}{y+yshift] = image([x][y];

for(y=0;y < Row; y++)

6-33

for (x = 0; x < Col; x++)
image[x)[y)=shifted_image{x][y];

free_matrix(shifted_image, Row, Col, location);

}

6.14 coefficients.c

JH o A o o o oo R o oo ok ok ok kK
Name: coefficients.c

Description: ~ This program maps a test face onto the set of
eigenfaces and stores the KL coefficients in
test_set.ng.

Written by: Pedro Svarez (Originally recon.c)

Date: 24 July 91

Modified by: Ken Runyon (Chopped off reconstruction)

Date: 221Jun 92

Modifications: I decided we didn’t need to actually reconstruct and
store a face. [also made the stand alone program

» into a module which is called by thesis.
(IR R R R Ly L T P L P T T P PP T T S L e T

#include <stdio.h>
#include <math.h>

*
*
*
*
*
*
*
*
*
*
*
&
*
*
*
*
*

void coefficients(dimension, num_coefs, infilename, outfile)
int dimension,
num_coefs;

char infilename|];
FILE =outfile;
LE =xfacel, »eigenin, xfweights, strain, «face_avg;
int ij. N, M, atoi();
goal tvecllor(), =*matrix(), *»+free_matrix(), »average_face, »#u, *pedro, *reconface;
oat »w, x|;
char filename[81), sstrcpy(), user[8], ext[10];

printf(*\nPulling Coefficients for %s\n*,infilename);

Jexxexrsnesnrsnsesr Set Up Files wxf
f+x+ Open Test Face »»+4
if ((face1=fopen(infilename," r *)) == NULL){
printf(*I can't open the input file*);
exit(—1);
/«x+ Open Avg Face »»4
if ((face_avg=fopen(*avg_face.dat","r"))== NULL){
primf(*I can't open avg_face.dat.");
exit(—1);
[axxv-x set up matrices xexsnd

N = dimension » dimension:
M = num_cocfs;

u = matrix(1,N, 1,.M);
pedro = vector(1, N);

6-34

avera%e.face vector(1, N);

reconface = vector(l, N); /x#% DO I NEED THIS? x4
w = vector(l, M);

I = vector(l, N);

Ixxxxxx Initalize Matrices »»»»»+4
for(j=1;]<M j++)

for(i=151<N;i++)

w[)]-u[n]'[)]-l[n] pedroli)=reconfacefi]=average_face|i}=0.0;
Isxxxxxxxx Load the Test Face into the Pedro Vector xxxxxuxxx#
for(j=1;j<Nij++)

fscan ('f'acel *%f\n*, &pedro[j]);
fclose(facel);

lexxxuuxxx Load the Average Face into the Average_Face Vector »x»»4

for? l,j<N,j++
scanf(face_avg, "%f\n", &average.face(j]);
fclose(face_avg);
lexxxxx Load the Eigenfaces into Matrix U x#%xx¥
train = fopen(*train.out*,"r*).
for(j=1; j<M; j++){

fscanf(train, *%s\n", filename);

eigenin = fopen(filename, “r*);

for(i=1i<N;i++){

fscanf(eigenin, " % £\n*,&u[il(j]);

}close(eigenin);
close(train);
Iexxxxx Subtract the Average Face from the Test Face #xx+x¥

for(i=1;i<N;i++)
I{i}= pedro[i) — average_face[i);

/+xxxxx Calculate the KL Coefficients »»»xx+¥

for(j=1; j<M;
orf(<]>r(|-Jl |<I$+|++)
wlj] = uli]{jI* Ilil+ wij);

Iexxxxx Write the Coefficients to the » coefs File »»xx*4
for(i=1; i<M; i++)
fprintf(outfile, *%£ *, wlil);
Ix»xxxx Write the Name of the Input Face 10 *.coefs #xxxx4
=0,
whlle(mﬁnename[l] #'\0")
if (lsa|pha(m.|lename(1]))
i++;
se
infilename(i) = 0;
strcpy(user,infilename);
fprintf(outfile, "%¥s\n", user);
free_matrix(u,1,N,1 M),

} /wend coefficients.c ¥

6-35

6.15 net_coefficients.c

h*t*#t#***#*l***#***#*t*t*###*t*tt**#t#t****#***‘***#‘**
Name: net_coefficients.c

Description: This program maps a test face onto the set of
eigenfaces and stores the KL coefficients in
train_coefs in a format the neural network can read.

Written by: Pedro Suarez (Originally recon.c)

Date: 24 July 91

Modified by: Ken Runyon (Chopped off reconstruction)

Date: 22 Jun 92

Modifications: I decided we didn’t need to actually reconstruct and
store a face. I also made the stand alone program

* into a module which is called by thesis.

20 e o o e e o o e o KoK o o e o ok kR Wk g *kkkE
#include <stdio.h>
#include <math.h>

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.

void net_coefficients(dimension, num.coefs, infilename, outfile, classfile,
num_class)
int dimension,
num.coefs,
numlass;

char infilename(};

FILE =outfile,
=cClassfile;

LE sfacel, *eigenin, *train, »face_avg;
it i, j, 1, N, M, atoi();
static int count = 0, exemplar = 0,
float =vector(), **matrix(), »average_face, »*u, *pedro, xreconface;
float »w, «I;
char filename[81], tstrcg (), user{8], ext[10]);
static char user1[9],user2[9];

printf(*\nPulling Coefficients for %s\n*,infilename);
[exnxxxrknknkerannks Sel Up Files sxxsxxxxxxnnsnrsrxsnsnns
l+xx Open Test Face s»+

if ((faceI=fopen(infilename,* r *}) == NULL){

printf("I can't open the input file");
exit(—1);

/+xx Open Avg Face »»4

if ((face.avg=fopen(*avg_face.dat ", r"))== NULL){
printf("I can't open avg_face.dat.");
exit(—1);

[exnxnn set up matrices »wxxxy

N = dimension * dimension;
M = num_coefs;

u = matrix(1,N, 1,M);

pedro = vector(1, N);

average _face = vector(1, N);

reconface = vector(l, N); /#*x DO INEED THIS? x»4
w = vector(1, M);

I= vector(l, N);

6-36

Jexsxux Initalize Matrices »**xx4

fOl’(]-l _|< ++)
for(i- ,n< ++)
wljl=u{iflj}=Ilil=pedro[i]=reconface(il=average_face{i]=0.0;

lexxexsxsx Load the Test Face into the Pedro Vector s xxsx%#

for(j=1;j<N; ++)
fscan (Tacel *%£\n*, &pedroljl);
fclose(facel);

Ixexexxrnx Load the Average Face into the Average_Face Vecior »x+

for(j=1;j<N;j++)
scanf(face_avg, "%f\n", &average_face[j]);

fclose(face.avg);
I=xxxxx Load the Eigenfaces into Matrix U s»*xx+4
train = fopen("train.out*, *r*);
for(j=1; j<M; j++){

fscanf(train, "$s\n*, filename);

eigenin = fopen(filename, “r*),

for(i=1;i<N;i++){

fscanf(eigenin, " % £ \n ", &uli](j])

llclose(eigenin);
close(train);
/xxxxxx Subtract the Average Face from the Test Face #+x++4

for(i=1:i<N;i++)
I[i]= pedrofi] — average_facel[i);

l=x»xxx Calculate the KL Coefficients *x*»xx+

for(j=1; j<M; j++
rf((l)r(r-'l I& i++)

wij) = u[llbl* Iil+ wij);
/x»xxxx Write an exemplar number (0 the file *+x» 4

fprintf(outfile, *%d *, exemplar);
exemplar++;

Ixxxx2x Write the Coefficients to the ».coefs File *xxxx4

for(i=1; i<M; i++)
fprintfoutfile, *$£ *, wi]);

Jexxxxx Write the desired outputs to the x_coefs File #x*+x4

0.
whﬂe(lnﬁlenamc[n #'\0")
if (isalpha(in lename[:]))
i++;

else
infilename[i} = 0;
strepy(userl infilename);

if(strcmp(user1,user2)){
fprintf(classfile,* $8s\n".infilename);
count++;
strepy(user2,userl).

for(l=num_class;1> 1;1— —){
if(count==I)
fprintf(outfile,*$£ *, 0.90000);
if(count#1)
fprintf(outfile,"$£f ", 0.10000);

6-37

}

fprintf(outfile, *\n*);
rec.matrix(u,1,N,1,M);

} /% rnd coefficients.c ¥

6.16 display.c

/#‘#**‘###*#*t*ttt*t##tttttt**t#‘#t##*
* display.c

= converts a .gra file to rle and

* displays it in openwindows using

* xli.

200500 o o e e o e e e e o o o o

int dimension,
aum_pro;

char filename[];

void display(dimension, filename,num_pro)

char command(80};
static int counter=0;

sprintf(command, “%s%s%s*", *cp °, filename,* .gra temp.rec");
system(command);
system("float _gray temp.rec temp.red").
switch(dimension){
case 640:

system("graytorle -o temp.rle 640 480 temp.red");
break;

case 128:

system("graytorle -o temp.rle 128 128 temp.red*);
break;

case 64:

sy;;lem('graytorle -o temp.rle 64 64 temp.red*),
reak:

case 32:
l_?z)*rsttem(‘grayt:orle -0 temp.rle 32 32 temp.red");

dpfaﬁlt:
printf(*I don't know what size the gra image is.®);

system(*rleflip -v -0 hold.rle temp.rle");

sprintf(command,*$s%s%s®,"mv hold.rle *, filename,*.rle");

system(command);

sprintf(command, " ss%s*,"x1i -quiet -zoom 300 -smooth -smooth '.ﬁlename..'.rle&');

/= counter++4

system(command);
I+ if(counter == num_pro) {
counter = 0;

system("rm ».red");
system("rm temp.»");
system("rm ».rle");
}+
}

6-38

6.17 globals.h

I

= File: globals.h

= Created: August 1992
* By: Kevin Gay

*
* Purpose: Put all global variables and definitions in one place.
*

*= Assumes: vfc.lib.h is also included - all the vfc routines and
» vic definitions are in vfclib.h.

*
* Modified:
* By:

* Why:

¥

#define PORT *VFC_SVIDEO"

#define YUVSIZE VFCNTSCHEIGHT*VFC_.YUV_WIDTH#*2 /« 720 x 480 x 2bpp #
#define NTSCSIZE VFCNTSC_WIDTH#VFCNTSCHEIGHT /« 640 x 480 4
#define SM_.WIDTH 32

#define SM_.HEIGHT 32

#define SM_SIZE SM_WIDTH*SM_HEIGHT

#define MOTION _THRESHOLD 3000

struct region

int X;
int y:
int width;
int height;

struct region =next;

struct hw_controls

fcDev =vicdev;
int colormap_offset;

struct image.ptrs

uchar simagel;
uchar ximage2;
uchar smotion;

v

struct head_ptrs

u_char =head;
struct head_ptrs *next;

b

6.18 gwind.c

/*##*##‘###t#t**t******#####‘tttt**t#*###*t#t*t##t###t#ttt#t#t#*
This routine takes an image by a guassian window.

written by: Pedro F, Suarez
29 July 91

Modified By: Ken Runyon
16 July 92

Modxgcazjon: Just made the ¢ program a module to be called by
esis.c

B L P T TP TR 2 2 e b e 12

#include <stdio.h>

6-39

#include <math.h>
#define g 3 1416
#define SQ(a) a=a

void gwind(row,image_file)
int" row;
char image.file[]);

int col=
ij k, counl
outval tempd, temp.j;
FILE =fin, *=fout, =fo;
float »*p, x*w, +xmatrix(), test,
xmean = 16,
xvar =10,
ymean = 16,
yvar = 14,
normal, .
inval, max, min;
double exp();
extern void rescale();
printf(* \nGaussian Processing %s\n",image_file);
lesxnsxrnnennnrnss Set Up Files sxsnsssssaatshaamamnssinsnin s

if ((An=fopen(image_file,"r ")) == NULL)
primf('ﬁ can't open the input file");
exit(—1);

[exxxenerenkraxnerexns Allocate Memory To Matrices sxxsxxsasshrxsss

p = matrix(0, row-1, 0, col—1);
w = matrix(0, row— 1 0, col-1);

lexexesenersxxsxsrsex Read The Input File Into The Matrix #»%xxksnf
for(j=0; j<row; j++)
for(i=0; i<col; i++)
fscanf(fin, *$£\n* &plillh;
fclose(fin).
[exnnxnxersrrsanerrns Calculate the Gaussian Window s xskxxokxik sk s
normal = 1/Q2 * pi = xvar * yvar),
for(i=0; i<row; i++)
for(r-O j<col; j++){
wiillj i- exp ((double) —0.5 »(SQ((i—xmean)/xvar)+ SQ((j—ymean)/yvar))).
plili] = plilli] * wlilli);
rescale(p, row, col),
rescale(w, row, col);
lersnsxsnasresnsers Reopen the input filc as an output file x#sxxxxxsrny
if ((fout-fopen(image.ﬁle,'w' N ==NULL)
pnn(tf(0 can't open the output file*);
exit(—1),

Iexsxxsnnrnsrxeersr Write the Result Back to the Input File ssssxxsxnsnd

for(j=0; j<row; j++)
for(i=0; i<col; i++)

6-40

fprintf(fout. *%4.0£\n *, plilGiD);
fclose(fout);
Jexrxarrrcnnexeeasirscexs SIore the gauss data into wind.dat xxx** s xxxx#

/«fo = fopen("wind.dat”, "w");
for(j=0; j< row; {++)
or(i=0; i< col; i++)
fprintf(fo, "%4.00\n ", w[il(j]);
fclose(fo).4

free.marrix(p.0, row—1, 0, col—1);
free_matrix(p,u, row—1, 0, col—1);

}

6.19 mdet.c
Ix
mdct.c

This program takes the 2-D Discrete Cosine Transform (2D-DCT) and the inverse (2D-IDCT) of an NxNx8 bit image.
The code is designed to work with any square image, but could be easily modified to work with any size image.

The program is desxﬁned to do a symmetric transform if so desired, This option merely flips and folds the image to 2Nx2N
pixels then takes the . This is not necessary, but can be interesting. I can’t think of any practical reason to do this. It
was thought to be necessary to have an even function when this research started.

nrutils.o must be included in the make file.

The Cosine Kernel matrix must be in the same folder. This is generated by CreateCMatrix.c.

Writen by Jim Goble, June 1991
Disclaimer -

Copyrighted by the Air Force Institute of Technology and by James R. Goble. May be used for any non-profit application
without permission. This code is presented as is, and no claims are made as to suitability for other applications. It is not
guaranteed to be error free.
Modified by: Ken Runyon, Sep 92
1. Redid the structure to make the program a module to be called by train and recognition programs.

. Got rid of prompts for image size, non-symmeltric/symmetric transform, and inverse transform.

2

3. Also pass infile as a parameter, and hardcode outfile as train.coefs.

4. Shontened resulting dct component matrix to just *ake an 8 x 8 rectangle of the fist coefficients.
b

. Added the user name to the output to create the train_coefs file.

]

#include <stdio.h>
#include <math.h>
#define SQ(A) (AxA)

void dctransform(N,ifname,DCT/ile,feature dimensions)

FILE *DCTfile;
char ifname(};
int N feature_dimensions;

lLlLE *=Cfile, #Ifile;

char user[8), answer, answer2;

float »»matrix(); /= rolg{ype call to nrutil routine ¥

float *+CosMat, *+ICosMat, *+TranMat, =xTempMat; /» rcserve pointers for my matrices ¥
float »xImMat; /« reserve Foimer for my image matrix #

int i,j,k, NN, N2, Z, valid, features;

6-41

printf(* $¥d\n%s\n%d\n* ,N,ifname,feature_dimensions);

I«
Get the input image. This routine also checks for file 1/0 errors.

¥
if((Ifile=fopen(ifname, " r *))==NULL)

printf(*File does not exist! %s",ifname,"\n"),
printf(*\n*");
} i« end of if ¥

!+ Open the Cosine Matrix CosMat.dat. The matrix is always Kept in this file. It is assumed that the proper size matrix is
stored here. If not, rfcnemte a new one with CreateCMatrix. Code checks for file errors, but not for incorrect matnix size.
C, being the wonderful excuse for a language that it is, will run the program with whatever happens to be in memory if you
do not have the proper matrix size.

¥
if((Cfile=fopen(*CosMat .dat*,"r*))==NULL)

printf(*Can't open file! CosMat.dat\n Run create.");
printf(*\n");

exit(0)

} i+ end of if ¥

/= Set parameters for DCT +

NN=N-1;
N2= N— l;
Z=N2;
printf(*"N = %d\n NN = %d\n N2 = %d\n Z = %d\n*,N,NN,N2,Z);
ImMat = matrix(0,N2,0,N2);
ICosMat = matrix(0,N2,0,N2);
CosMat = matrix(0,N2,0,N2);
TranMat = matrix(0,N2,0,N2).
TempMat = matrix(0,N2,0,N2);

/= Initialize the Appropriated Matrices ¥
for(i=0:. i<N2; i++‘),

for(j=0; j<N2; j++)
M TompMat(il1=0.0;

I+ Read in the cosine matrix from disk.

Erimf *!t1!' Opening and Reading Cosine Matrix!:\n *);
file=fopen("CosMat .dat ", "r*);

for(i=0;i < N2;i++)

for (j = 0; j T N2; j++)

éscanf(Cﬁle, *%f* &CosMat[i](jl);
}ICosMatLi][i] = CosMatlil(il;

fclose(Cfile);

printf(*!!! Finished Reading Cosine Matrix!:\n *);
rintf(* ! !} ning and Reading Image Matrix!:\n *);
or (i = 0; | < N2; i++)

for = 0:j N2; j++)

#scanf(lﬁle. % &ImMatfi}{jD;
Jﬁmf("l‘aking DCT !:\n "),
fclose(Ifile),
printf(*!!! Finished Reading Image Matrix!:\n "),
/s Do DCT 4
for (i=0;i < N2;i++)
’or(j =0;j < N2; j++)

6-42

for (k = 0; k < N2; k++)
‘f‘empMax[i][j] = TempMat{il(j] + CosMat[il[k]*ImMat[k][j];
}

}
for}(i =0;i < N2;i++)
lor (G=0;j < N2;j++)
or(k=0;k < N2; k++)
‘{‘ranMat[i][i] = TranMat{i)(j] + TempMat[i)(k}*ICosMat{k}(j];

}

printf(*Finished Taking DCT !:\n *);

printf(*Writing Output!:\n *);
I¥ Now output the results to the file named above. ¥

printf("Writing Output!:\n *);
1= Now output the results to the file named above. ¥
for (i = 0; i< feature_dimensions; ++i) {
for (j = 0; j < feature_dimensions; ++j) {
fprintf(DCThile, "$ £\t *, TranMat[i}{j]);
} /= end of n for loop ¥
} /+ end of m for loop ¥

Texxxxx Write the Name of the Input Face to *_coefs xxx%x+4
i=0;
while(ifname[i] # ‘\0*)
if (isalpha(ifnameli]))
i++;
Ise

ifnameli} = 0;
strcpy(user,ifname);
fprintf(DCTHfile, "%s\n", user);
system(*ls *.gra®);

} fx end of DCT.c ¥

6.20 rescale.c

[ERERerRERERRERK ERXE

NAME: rescale
DESCRIPTION: This routine scales the matrix into the 0 - 255 range

LRI TSR 2 RS 22 2 22 a2 ittt s]t

#tinclude <stdio.h>
#include <math.h>

void rescale(output, row, col)

float »+output;
int row, col;

int NEW_MAX =255,
NEW.MIN =0,
L3
count;
float min,
max;

/»» Check for the max and min value in the data »+4

6-43

i

min=max=output{0]{0];
couni=0;

for(j=0: j<row; j++)
for(i=0; i<col; i++){
if(output[i]{j1>max)
max=output[i](j);
if(output{illj}<min)
min=output(i}lj};
count++;

Iexx Now translate data and write 1o output file »»¥
for(j=0; j<row; j++)

for(i=0; i<col; i++)
output{ilfj) = ((output{i}{ji—min)»(NEW_MAX—NEW MIN)/(max—min) + NEW _MIN);

6.21 grab.c

I

= File: grab.c

= Created: 8 July 1992

* By: Kevin Gay
*

= Purpose: This code is intended to collect in images in a loop num_loop.

Each pass thru the loog takes in YUV image data,

converts the data to 8-bit gray, square pixel data, and

save the 8-bit daia in a file labelled with person’s name.

[Note: z_binarize_gra allows image to be binarized

Just change utore_imaﬁe var gray.data to bin_data)

Number of loops (num_loop) and person’s name (person)

are entered during execution.

‘Assumcs: Signal coming in S-Video port, NTSC format
:lincluge <stdio.h> h
include <sysfypes.h>
#include *vfc_lib.h*
#include *globals.h*

extern struct hw._controls =z_set_vfc_hw();

extern u_char *z_grab_gra();
extern uchar sz.reduce(),
extern int z.store_image();

int dimension;
void grab(dimension)
uchar =gray.data, *sm_data;
struct hw._controls =hw _pirs;
char filename[30];
int S_WIDTH = dimension,
S.HEIGHT = dimension,
SSIZE = S WIDTH » S_HEIGHT:
lesxswxsunnssssrs BEGIN IMAGE GRABBING LOOP sxsssxasnsnsssnnend
printf(* \nGrabbing the Image\n");

hw_ptrs = (struct hw_controls »)z_set_vfc_hw();

I
;Readinasbitgmyimagc

gray data=(u_char :)z_grab.gra(hw.p.trs);
if(graydata == NULL)
{

printf(*ptr is null\n");
exit(1);

1%
: Creale a reduced image from the 8 bit gray data.

sm._data=(u.char t)z.reduce((ﬁ;a"y.data,VFC_NTSC.WIDTH,VFC.NTSC_HEIGHT,
S_WIDTH,S_HE! %
if(sm_data == NULL)

printf(*small ptr is null\n®);
exit(1);

153
: Create name for image data and store in file.
sprintf(filename," $s*,*user .red");

if(z_store_image(sm_data, filename, S_SIZE) < 0)
fprintf(stderr,“Unable to write %s to file\n" filename);

lexxxnxsxxxnxxxx END IMAGE GRABBING LOOP

/*
; Now destroy the hardware and free the memory.

vfc.destroy(hw_ptrs— vfc_dev);
free(sm.data);
free(gray.data);
free(hw_ptrs);
} fex* end grab.c x4

6.22 k_nearest.c

e e ko ok o ok ok
= Name: k_nearest.c

*

+= Description: This program finds the k nearest neighbors for a given
* test image where k is the number of prototypes for

* cach person in the training set. The nearest neighbors

* are rank ordered by euclidean distance. Scores for

* each person found are calculated by summing weighted

* values for each position in the ranked nearest neighbor

* list. The winner is the person with the highest score.

*

= Written by: Ken Runyon

*®

= Date: 11 Sep 92

*

YTTTLL e kR RRR R 4
#include <stdio.h>

#include <math.h>

#define MIN.ARRAY SIZE 20
#define numberblocks 300
#define START 100000
#define SQ(A) (A=A)

typedef char »string;
void k_nearest(num_protos,num_coefs,numtrain.faces)
int num.protos,

num.coefs,
num_train.faces;

6-45

N

FILE *flest,
«firain,
=fout;

float distance,
temp,
bottom,
saverage,
»sd,
svector();
i},

i

k,

begin,
max;

char name[20},

command(80},
filename[30};

double sqrt();
struct block

oat «feature_vec;
char name[20];
float distance;

struct rank.array
{
char name[20};
int score;
float distance;

struct block atest{1];

struct block btrain{numberblocks);

struct rank.array score.pad{MIN_ARRAY SIZE};
printf(* \nFinding the Nearest Neighbors\n®);

HexsranannnsnnnannOpen the Files sxsresnnsnssns

if ((ftrain=fopen(*train_coefs","r*))== NULL){
pnn(tf(§ can't open the train coefficients file"),
exit(—

if ((frest=fopen(* test _coefs*,*r*))== NULL){
pnn((f(§ can't open the test coefficients file®);
exit(—-1);

{exnnsx [nitialize birain block sx=xsd

for(i=1; i<num_train_faces; i++){
birain{i].feature_vec=vector(1, num.coefs);
btrain(i].distance = 0.0;

Ienanss Initialize atest block #xsxsd

atest|0].feature..vec=vector(1, num_coefs);
atestf0).distance = 0.0;

faxwanx Create a Couple of Vectors sansed

average=vector(1, num.coefs);
sd=vector(1, num.coefs);

Jexnnes [nitialize those Vectors sessnd

for(i=1;i<num_coefs; i++)
averageli]=sd[i]=0.0;

/=xxxxx Read the Test Coefficients into the atest Matrix ¥

for(j=1; li<num.coefs; j++) g
fscanf(fiest, “%£*, &temp);
atest[0].feature_vec[j}=temp;

lexxxxx Then Read in the Name that Belongs to those Coefficients x#x#x4

fscanf(ftest, “%s\n*, atest[0].name);

lexxxxx Read the Training Database into btrain Matrix sxxx#

for(i=1; i< num_train_faces; i++){
for(j=1; j<num._coefs;j++) {
fscanf(ftrain, *%£*, &temp);
btrain(i].feature_vec{jl=temp;

fscanf(firain, *%s\n", btrain[i).name);

lexxxx+ Statistically Normalize »*x x4

for(j=1; j<num_coefs; j++)
average]j)+=atest[0].feature_vec[j)/num_train_faces + 1);

for(j=1; j<num_coefs; j++)
for(i=1; i<num_train_faces; i++)
average(j]+=btrain{i].feature_vec[jl/num _train_faces + 1);

forg=l ; i<num_coefsj++)
sd[j] += (atest[0).feature.vec(j] — average(j})*
(atest[0) feature_vec[j) —average[j]);

for(j=1; j<num_coefs;j++)
for(i=1;i<num.train_faces;i++)
sd(j] += (btraini].feature_vec(j] — average[j]) *
(btrain[1].feature_vec{j] — averageljl);

for(j=1j <num_coefs;j++) &
sdH]=sqn((double) sd(j});
: sdj} = ((double) 1/mum train_faces) * sd[j};

lex#x+x Calculate Euclidean Distance to Each Prototype sxs«x+4

for(i=1; i<num_train_faces; i++){
temp=0;
for(j=1; j<num_coefs;j++) {
temg = (atest[0].feature_vec(j] ~— btrain{i].feature_vecj]) *
(atest[0).feature_vec(j] — btrain[i].feature_vec{j]) + temp;
btrain(i].distance = sqrt ((double) temp);

}

Iexxxxx Store the k-nearest neighbors rank ordered by distance »*«x»4

for(j=1; j<num.protos; j++)
rt&:’mp]=='STAR;F; atd
for(1=1; i<num.train_faces; i++)
if((btrain[i).distance < temp)&&(btrain(i).distance > bottom)){
temp = btrain[ia]d%i]smnce; brsin(il)
s score. .name, btrain[i).name);
sg:rzy.;ad[i]&stance = birain{i].distance;

bot}tom = temp;

lexxxes Assign Weights for Each Position in the Rank_Ordered Matrix ssss«xsd

6-47

for(j=1; j<num_protos; j++){
score_pad{j].score = num_protos+1 ~ j;

LS

lexexsxexkrannrns Print the Rank sx»xexss

/xprintf("\ nLooking for : %s\n\n", name);

for(j=1; j<num.protos; j++)

printf("\n %d\l%&s) 1%4.00\1%d" j,score_pad(j}].name,score_pad(j] distance,
score_pad[j].score);

Hexxsnes Tally the Scores s« xxx4

for(i=1; i<num_protos; i++){
strcpy(name,score.pad({i].name);
begin = i+1;
for(j=begin; j <num.protos; j++){
if(!stremp(score pad[j]l.name, name))
score_pad[il.score += score_pad(j].score;

}
}
Jrkksnnxnxnxkiokxsr Find out Who (he USEr IS ks dk sk £ xt kR h ko kkn sk
strcpy(name,(char *)getenv(*USER*)),
Drkodtokkokdkdxxrn s Pring the SCOMe *#xxskkxksnsokkskssx ks
rintf(" \n\nLooking for : %s\n*, name);
or(j=1; j<num_protos; j++)
printf(* \n%d\t %8s\t %4. 0£\t ¥4",j,score.pad[j).name,score.pad(j].distance,
score_pad{j].score);
lexxx4x Find the Max Score #xx+x¥
max = 1;
temp = score_pad{max].score;
for(i=1; i< num_protos; i++)
if(temp <score_padfi].score){
=1,

temp=§core.pad[i].score;

Jesxexnenexxkx Pull Up the Image of the Nearest Neighbor s xxsxkxxxsxd

sprintf(filepame, * $5%s%d", "training_images/*,score.padlmax].name,1);
Iedisplay(32,filename, 1);4 .

[xxxxx2 Signify the Person Recognized and Display the Image *»zx»+4

if({stremp(name,score _pad{max}].name))
printf(* \n\nLogged in as %s\n*,name);

else {
printf(* \n\nYou've been recognized as $s\n*score.pad{max].name);
I=system("logout”);¥

} r#x= end k.nearest »»¥

6-48

10.

11.

12.

13.

14.

1S.

Bibliography

. Cottrell, Garrison W. and Janet Metcalfe. “EMPATH: Face, Emotion and Gender Recognition

Using Holons,” Unpublished (1991).

Farahati, et al. “Real-time recognition using novel infrared illumination,” Optical Engineering,
31:1658-1662 (August 1992).

Fleming, Michael K. and Garrison W. Cottrell. “Categorization of Faces Using Unsupervised
Feature Extraction,” IEEE International Joint Conference on Neural Nerworks, 2:65-10 (1990).

Gay, Kevin P. Autonomous Face Recognition. MS thesis, AFIT/GE/ENG/92D. School of Engi-
neering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, September 1992.

Goble, James R. Face Recognition Using the Discrete Cosine Transform. MS thesis,
AFIT/GE/ENG/91D-21. School of Engineering, Air Force Institute of Technology (AU), Wright-
Pattersoa AFB OH, December 1991,

Hayden D. Ellis, et al, editor. Aspects of Face Processing. The Netherlands: Martinus Nijhoff
Publishers, 1986.

. Kirby, M. and L. Sirovich. “Applications of the Karhunen-Lo&ve procedure for the characteriza-

tion of human faces,” IEEE Transactions PAMI, 12 (1990).

. Krepp, Dennis L. Face Recognition with Neural Networks. MS thesis, AFIT/GE/ENG/92D.

School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1992.

. Lambert, Lawrence C. Evaluation and Enhancement of the AFIT Autonomous Face Recognition

Machine. MS thesis, AFIT/GE/ENG/87D-35. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1987.

Payne, et al. “Backpropagation Neural Networks for Facial Verification Update,” Los Alamos
National Laboratory (1992 Unpublished).

Robb, Barbara C. Autonomous Face Recognition Machine Using a Fourier Feature Set. MS
thesis, AFIT/GE/ENG/87D-35. School of Engineering, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, December 1987.

Routh, Richard L. Cortical Thought Theory: A Working Model of the Human Gestalt Mecha-
nism. PhD dissertation, School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1985.

Ruck, Dennis W. Characterization of Multilayer Perceptrons and their Application to Multisnesor
Automation Target Detection. PhD dissertation, School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, December 1990.

Russell, Robert L. Performance of a Working Face Recognition Machine Using Cortical Thought
Theory. MS thesis, AFIT/GE/ENG/85D. School of Engineering, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, December 1985.

Sander, David D. Enhanced Autonomous Face Recognition Machine. @ MS thesis,
AFIT/GE/ENG/89D-19. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1989.

BIB-1

16.

17.

18.

19.

Smith, Edward J. Development of an Autonomous Face Recognition Machine. MS thesis,
AFIT/GE/ENG/86D-36. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1986.

Suarez, Pedro F. Face Recognition with the Karhunen-Loeve Transform. MS thesis,
AFIT/GE/ENG/91D-54. School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB OH, December 1991.

Turk, Matthew A. and Alex P. Pentland. “Eigenfaces for Recognition,” Journal of Cognitive
Neuroscience, 1-28 (September 1990).

Turk, Matthew A. and Alex P. Pentland. *“Recognition in Face Space,” SPIE Intelligent Robots
and Computer Vision IX: Algotithms and Techniques, 1381:43-54 (1990).

BIB-2

Vita

Captain Kenneth R. Runyon was born on January 9, 1961 in Logan, West Virginia. He graduated
from Man High School in Man, West Virginia in 1979. Capt. Runyon entered the Air Force in
September, 1979 as an Instrumentation Mechanic. He served five years at Wright Patterson AFB, Ohio
with the Flight Dynamics Laboratory, Air Force Wright Aeronautical Laboratories. He entered the
Airman’s Education and Commissioning Program in March, 1985 and completed a Bachelor of Science
degree in Systems Engineering at Wright State University in Dec, 1987. He served three years with the
Space Systems Division at Los Angeles AFB, California before entering the School of Engineering,
Air Force Institute of Technology in June, 1991. He is married to Lisa (Adkins) Runyon of Robinette,

West Virginia and has two children: Anna Marie, age 11, and Sarah Lynn, age 1.

Permanent address: P.O. Box 339
Man, West Virginia 25635

VITA-1

-~

REPORY DOCUMENTATION PAGE

o ALproved
MR NG

i oias

S

ot

P . wpe e Lo S .. . N S T Lt R e S S FCREPAE . Ca e UootE

3. REZOKT TYPE AND DATES JOVERED

1AGENCY USE ONLY oy cxl {2 REPORYT DATE | .
December 1992 i Master’s Thesis
T3 TITLE AND SUATITLE T 5 FUNDING NUMBERS
Automated Face Recognition System
& AUTHO
Kenneth R. Runyon, Captain, USAF
T TR RE ARG CRGANIZATION AL AND ALDA:S31ES]) "8 PERFURMING ORGANIZATION
. . EPOAT NUMSER
Air Force Institute of Technology REPORT NJMLER
WPAFB OH 45433-6583 AFIT/GE/ENG/92D-33
§ APON ARG, AN RN e LT MLl eT AMD ADDRFSSES) 710. SPONSORING . MONiTCRING
: . © AGENCY REPORT NUMBER
Maj Rodney Winter é
DIR/NSA,R221 ;
9800 Savage Rd :
Ft Meade, MD 20755-6000 '
EERUTOTEY T
113 D15 TRAUT N AVAL ABLITY STATEMENT

. 12b. DISTRIBUT'GN (GDE

Distribution Unlimited i

by amaa o me

In this thesis three variations of an end-to-end face recognition prototype system are developed, implemented
and tested. Each version includes real-time image collection, automated segmentation, preprocessing, feature
extraction, and classification. The first version uses a Karhunen Loéve Transform (KLT) feature extractor and
a K(-nearest neighbor classifier. Version two uses the same feature set but utilizes a multilayer perceptron neural
network with a back propagation learning rule. Finally the third version uses a Discrete Cosine Transform as the
feature extractor and the K-nearest neighbor as the classifier. Only the KLT versions of the system were tested.
The tests were based on three image sets, each collected over multiple days to analyze the effect on recognition
accuracy of variations in both the image collection environment and the subjects over time. The first set consisted
of 23 Subjects and was taken over a two day period. The second set consisted of four users and was taken over a
seven day period. Finally, the third set consisted of 100 images of a single subject collected over several weeks.

14, SURIECT TERMAS 15. NUMBER OF PAGES
face recognition, karhunen loéve transform, discrete cosine transform, k-nearest 118
neighbor, neural networks, backpropagation, user verification 16. PRICE CODE
17. SECURITY CLASSIFICATION 118, SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT !
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Proscribed by ANS) Sta [39.'8
298-102

